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Abstract We introduce a formalism of scalar proper volume weighted averages
(the “q–average”) acting on compact comoving domains of quasi–spherical Szek-
eres models with a dust source. Although these models do not admit isometries, the
resulting averaged scalars are spherically symmetric functionals that can be defined
as local functions (the “q–scalars”) by considering a varying averaging domain. The
fluctuations of the density and Hubble scalar with respect to their corresponding
q–scalars determine the Riemann, Weyl, electric Weyl and shear tensors through
irreducible covariant algebraic expansions. The q–average of all invariant scalars
formed by contractions of these tensors are directly related to statistical variance
and covariance moments of the density and Hubble scalar with respect to their q–
averages. The q–scalars and q–averages, together with their fluctuations, lead to
complete systems of evolution equations and algebraic constraints that fully de-
termine the dynamics of the models. However, these evolution equations lack the
“back–reaction” correlation terms characteristic of Buchert’s averaging scheme.

1 Introduction

The Szekeres dust models are a well known class of exact solution of Einstein’s
equations that admit (in general) no Killing vectors [1]. For this reason they are
natural candidates to construct models of cosmological inhomogeneities that are
much less idealized than spherically symmetric configurations that arise from the
Lemaı̂tre–Tolman–Bondi (LTB) models [2] (their spherical limiting case). How-
ever, Szekeres models provide also an ideal theoretical framework for the study of
generic properties of inhomogeneity, such as averaging. In this brief article we intro-
duce a formalism of proper volume weighted averages acting on compact comoving
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domains, and thus we consider only the “quasi–spherical” QS subclass of models
for which such domains always exist [3].

2 Quasi–spherical Szekeres models

QS Szekeres dust models can be described by the following metric reminiscent of
the spherically symmetric LTB metric:

ds2 =−dt2 +
E 2 Y ′2

1−K
dr2 +Y 2 [dx2 +dy2] , (1)

where Y = Y (t,r,x,y) and E = E (r,x,y) are given by

Y =
R
E
, E =

S
2

[
1+

(
x−P

S

)2

+

(
x−Q

S

)2
]
, (2)

with R = R(t,r) being the area distance that appears in LTB metrics and S(r), P(r),
Q(r) are the Szekeres characteristic free arbitrary functions, so that (1) becomes
the LTB metric if they are constants. The metric function Y satisfies an analogous
Friedman–like equation as R in LTB models:

Ẏ 2 =
2M̃
Y

− K̃, M̃ =
M(r)
E 3 , K̃ =

K(r)
E 2 . (3)

The main covariant scalars are the density, ρ , the Hubble expansion scalar Θ =∇aua

and the Ricci scalar 3R of hypersurfaces 3T [t] orthogonal to ua take also LTB–like
form:

4π
3

ρ =
M̃′

3Y 2Y ′ , H ≡ Θ
3
=

(Y 2Y ′)̇

3Y 2Y ′ , K ≡
3R

6
=

(K̃Y )′

3Y 2Y ′ . (4)

3 Quasi–local average and quasi–local scalars.

Let A be a scalar function defined along an arbitrary hypersurface 3T [t] whose
proper volume element is dV =F−1Y 2Y ′drdxdy, with F ≡

√
1−K/E , the quasi–

local scalar average of A for a compact comoving domain D [rb] bounded by r = rb
is the linear functional

⟨A⟩q[rb] =

∫
D AFdV∫
D FdV

=

∫
dy

∫
dx

∫ rb
0 AY 2 Y ′dr∫

dy
∫

dx
∫ rb

0 Y 2 Y ′dr
, (5)

which applied to A = ρ, H , K yields (with the help form (3) and (4)) averaged
quantities that do not depend on the “non–spherical” coordinates (x,y) (even if the
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A depend on all 4 coordinates, see [3, 4]):

4π
3
⟨ρ⟩q[rb] =

M̃b

Y 3
b

=
Mb

R3
b
, ⟨K ⟩q[rb] =

K̃b

Y 2
b
=

Kb

R2
b
, (6)

⟨H ⟩q[rb] =
Ẏb

Yb
=

Ṙb

Rb
, ⟨H ⟩2

q[rb] =
8π
3
⟨ρ⟩q[rb]−⟨K ⟩q[rb], (7)

where the subindex b denotes evaluation at r = rb. Since rb is arbitrary, we can
construct the following functions of (t,r) that evaluate locally (the “q–scalars”) from
the functionals (6)–(7) by considering domains with varying boundary:

4π
3

ρq =
M
R3 , Hq =

Ṙ
R
, Kq =

K
R2 , H 2

q =
8π
3

ρq −Kq. (8)

The relevant curvature and kinematic tensors of the models: the Riemann (Rab
cd ),

Ricci (Rab), Weyl (Cacbd) and electric Weyl (Eab = ucudCacbd) tensors, as well as
the shear tensor (σab), are all expressible in terms of irreducible algebraic decom-
positions containing only the metric, the projection tensor hab = gab + uaub and a
common divergence–less tensor eab = hab −3ηaηb (ηa =

√
hrrδ r

a ), with the coeffi-
cients given by ρ, H and their fluctuations with respect to ρq, Hq:

Rab
cd =

8π
3

ρ
(

3δ [a
[c δ b]

d] +6δ [a
[c ub]ud]−δ a

[cδ b
d]

)
+Cab

cd , (9)

Ra
b = 4πρ (ha

b +uaub) , Cab
cd =

4π
3

Dq(ρ)(h
[a
[c −3u[cu[a)eb]

d]), (10)

σab = −Dq(H )eab, Eab =
4π
3

Dq(ρ)eab, (11)

where the fluctuations Dq(ρ) and Dq(H ) are defined as

4π
3

Dq(ρ) =
4π
3
(ρ −ρq) =

4π
3

ρ ′
q

3Y ′/Y
=Ψ2, (12)

Dq(H ) = H −Hq =
H ′

q

3Y ′/Y
=−Σ , (13)

with Σ and the conformal invariant Ψ2 (the eigenvalues of Eab and σab in terms of
eab) given by

Σ = σabeab =−1
3

(
Ẏ ′

Y ′ −
Ẏ
Y

)
, Ψ2 = Eabeab =

M̃
Y 3 − 4π

3
ρ. (14)
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4 Statistical fluctuations and invariant scalars.

The statistical fluctuation of a Szekeres scalar A with respect to its q–average ⟨A⟩q
is given by

Dst
q(A) = A(t,r,x,y)−⟨A⟩q[rb](t) ⇒ ⟨Dst(A)⟩q[rb] = 0, (15)

and is a non–local quantity that depends in inner points of the domain and also on its
boundary r = rb. Evidently, the fluctuations Dq(ρ) and Dq(H ) in (12) and (13) are
not statistical fluctuations, as they are evaluated locally and thus ⟨Dq(ρ)⟩q[rb] ̸= 0
and ⟨Dq(H )⟩q[rb] ̸= 0 hold. However, as proven in [5, 6], the averages of local
quadratic fluctuations coincides with the average of quadratic statistical fluctuations,
and thus relates these averages with the variance and covariance statistical moments
Varq and Covq

1

⟨ [Dq(ρ)]2 ⟩q = ⟨ [Dst
q(ρ)]2 ⟩q = ⟨ρ2⟩q −⟨ρ⟩2

q = Varq(ρ), (16)

⟨ [Dq(H )]2 ⟩q = ⟨ [Dst
q(H )]2 ⟩q = ⟨H 2⟩q −⟨H ⟩2

q = Varq(H ), (17)
⟨Dq(ρ)Dq(H )⟩q = ⟨Dst

q(ρ)Dst
q(H )⟩q = ⟨ρH ⟩q −⟨ρ⟩q⟨H ⟩q

= Covq(ρ,H ), (18)

where we omitted the domain indicator [rb] to simplify the notation.
The relation between the local fluctuations Dq(ρ), Dq(H ) and the covariant

scalars Ψ2 and Σ in (12) and (13) illustrates an interesting and appealing relation
between the q–average and the characteristic tensors of the models through the
properties (16), (17) and (18): the q–averages of all quadratic contractions of the
curvature and shear tensors in (9)–(11) are directly expressible in terms of statistical
moments of ρ and H with respect to ⟨ρ⟩q and ⟨H ⟩q:

⟨σabσab⟩q = 6⟨Σ 2⟩q = 6Varq(H ), (19)

⟨EabEab⟩q = 6⟨(Ψ2)
2⟩q =

32π2

3
Varq(ρ), (20)

⟨σabEab⟩q = 6⟨Σ E ⟩q = 8πCovq(ρ,H ), (21)

⟨CabcdCabcd⟩q =
256π2

3
Varq(ρ) =

4
3

Varq(R) = 8⟨EabEab⟩q, (22)

⟨RabcdR
abcd⟩q =

256π2

3

[
Varq(ρ)+

5
4
⟨ρ2⟩q

]
=

4
3

Varq(R)+
5
3
⟨R2⟩q, (23)

where we used the fact that the Ricci scalar is R = 8πρ , and thus: ⟨R⟩q = 8π⟨ρ⟩q
and RabR

ab =R2. We can express the ratio of Weyl vs Ricci curvature (Ψ2/R) and
anisotropic vs isotropic expansion (Σ/H ) as ratios between the q-scalars ρq, Hq
and their counterparts ρ, H :

1 This result was proven for LTB models, but it is straightforward to prove that it also holds for the
QS Szekeres models.
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6Ψ2

R
= 1−

ρq

ρ
,

Σ
H

=
Hq

H
−1, (24)

Also, the quadratic ratio of Weyl to Ricci curvatures is expressible as the ratio of the
averages of (Ψ2)

2 and R2, and as a sort of “standard deviation” of ρ with respect to
⟨ρ⟩q:

6⟨EabEab⟩q

⟨RabRab⟩q
=

6⟨(Ψ2)
2⟩q

⟨(R)2⟩q
=

6Varq(ρ)
⟨ρ2⟩q

=
⟨ρ2⟩q −⟨ρ⟩2

q

⟨ρ2⟩q
, (25)

A similar standard deviation of H with respect to ⟨H ⟩q follows as the quotient of
averages of quadratic covariant scalars σabσab and H 2:

⟨σabσab⟩q

6⟨H 2⟩q
=

⟨Σ 2⟩q

⟨H 2⟩q
=

Varq(H )

⟨H 2⟩q
=

⟨H 2⟩q −⟨H ⟩2
q

⟨H 2⟩q
, (26)

where we used (14).

5 Comparison with Buchert’s average.

Buchert’s scalar average is the standard proper volume average, ⟨A⟩p[rb], hence it is
defined by (5) with F = 1:

⟨A⟩p[rb] =

∫
D AdV∫
D dV

=

∫
dy

∫
dx

∫ rb
0 AF−1Y 2 Y ′dr∫

dy
∫

dx
∫ rb

0 F−1Y 2 Y ′dr
. (27)

Evidently, the scalars Σ and Ψ2 are not related to the the local fluctuations Dp(ρ),
Dp(H ) (analogous to Dp(ρ), Dp(H )) through a closed and straightforward man-
ner as (12)–(13). Therefore, the relations between the Buchert’s averages of invari-
ant quadratic scalars and the variance and covariance moments with respect to this
average is much more complicated than the simple elegant relations (19)–(23). Like-
wise, we cannot express with this average the ratio of Weyl to Ricci curvature as in
(25) and (26).

It is straightforward to show that the “back–reaction” correlations terms that ap-
pear when applying Buchert’s average to evolution equations vanish if we apply the
q–average (5). The Raychaudhuri equation for Szekeres models is

Ḣ =−H 2 − κ
6

ρ −2Σ 2, (28)

averaging on both sides, using (13) and the commutation rule (we omit the domain
indicator)

∂
∂ t

⟨A⟩q −
⟨

∂A
∂ t

⟩
q
= ⟨A⟩̇q −⟨Ȧ⟩q = 3⟨H A⟩q −3⟨H ⟩p⟨A⟩q, (29)
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for A = H , we obtain

⟨H ⟩̇q[rb] =−⟨H ⟩2
q[rb]−

4π
3
⟨ρ⟩q[rb]+2Qq[rb], (30)

where Qq[rb] is the back–reaction term :

Qq[rb] ≡ ⟨(H −⟨H ⟩q)
2⟩q −⟨(H −Hq)

2⟩q

= ⟨
[
Dst

q(H )
]2⟩q[rb]−⟨[Dq(H )]2⟩q[rb] = 0, (31)

which vanishes identically for every domain as a consequence of (16) (see [5, 6]).
Hence, (30) reduces exactly to a FLRW Raychaudhuri equation given in terms of
q–averages. While Buchert’s average satisfies the same commutation rule (29), the
scalar Σ 2 is not directly related to a local fluctuation of H (i.e. as in the relation
(13)), hence its application to the Raychaudhuri equation (28) yields a different
result: equation (30) with the p average, but with nonzero back–reaction:

Qp[rb] ≡ ⟨(H −⟨H ⟩p)
2⟩p −⟨(H −Hq)

2⟩p

= ⟨
[
Dst

p(H )
]2⟩p[rb]−⟨

[
Dst

q(H )
]2⟩p[rb] ̸= 0, (32)

where we used (17).

6 Evolution equations.

While the re–interpretation of the dynamics through the presence of extra back–
reaction terms is not possible with q–average, the latter yields evolution equations
that are complete and self–consistent, as opposed to the evolution equations from
Buchert’s average that require making extra assumptions on the back–reaction terms
in order to close the system. As shown in [3], if we define relative fluctuations (or
“exact perturbations”) as

∆ (A) ≡
Dq(A)

Aq
=

A−Aq

Aq
=

A′
q/Aq

3Y ′/Y
, A = ρ, H , K , (33)

the dynamics of the models becomes completely determined by the following sys-
tem of autonomous evolution equations

ρ̇q = −3ρqHq, (34)

Ḣq = −H 2
q − 4π

3
ρq, (35)

∆̇ (ρ) = −3(1+∆ (ρ))Hq∆ (H ), (36)

∆̇ (H ) = −(1+3∆ (H ))Hq∆ (H )+
4πρq

3Hq
(∆ (H )−∆ (ρ)), (37)
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subjected to the algebraic constraints

H 2
q =

8π
3

ρq −Kq, 2∆ (H ) = Ωq ∆ (ρ)+(1−Ωq)∆ (K ), (38)

where we have introduced the following q–scalar analogous to a FLRW Omega
factor

Ωq ≡
8πρq

3H 2
q
, Ωq −1 =

Kq

H 2
q
. (39)

If we consider instead non–local statistical relative fluctuations

∆ (A)
NL =

Dst
q(A)

⟨A⟩q[rb]
, (40)

such that

1+∆ (A)
NL =

Aq(r)
⟨A⟩q[rb]

(1+∆ (A)), (41)

we obtain the following system of evolution equations:

⟨H ⟩̇q[rb] = −⟨H ⟩2
q[rb]−

4π
3
⟨ρ⟩q[rb], (42)

⟨ρ ⟩̇q[rb] = −3⟨H ⟩q[rb]⟨ρ⟩q[rb], (43)

∆̇ (ρ)
NL = −3(1+∆ (ρ)

NL )⟨H ⟩q[rb]∆
(H )
NL , (44)

∆̇ (H )
NL = −(1+3∆ (H )

NL )⟨H ⟩q[rb]∆
(H )
NL +

4π ⟨ρ⟩q[rb]

3⟨H ⟩2
q[rb]

(∆ (H )
NL −∆ (ρ)

NL ) (45)

−2⟨H ⟩q[rb]

(
1−

Hq(r)
⟨H ⟩q[rb]

)2

+4(Hq(r)−⟨H ⟩q[rb])∆
(H )
NL ,

which, in order to render a fully complete system, must be supplemented by the
evolution equations (34) and (35) for ρq and Hq. This system is subjected to the
same algebraic constraints (38), but given in terms of q–averages and non–local
relative fluctuations. Evidently, (42)–(45) is much more complicated than (34)–(37),
and both systems coincide for comoving observers at the domain boundary r = rb
where ⟨H ⟩q[rb] = Hq(rb) holds for all t.

7 Conclusions.

Szekeres models provide an ideal tool to explore the theoretical consequences of
non–trivial inhomogeneity, and in particular, the relation between averaging and the
geometric objects that characterize inhomogeneous spacetimes. We have shown how
a suitable weighted scalar average (the q–average) allows us to relate the average of
invariant scalars and statistical variance and covariance moments of the density and
Hubble scalar. We have also shown that the dynamics of the models can be com-
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pletely determined by evolution equations constructed with these averaged scalars
(and functions constructed with them) and their fluctuations, which can be local or
non–local (statistical). While the evolution equations of the q–averages lack “back–
reaction” terms characteristic of Buchert’s average (the q–average with unit weight
factor), these evolution equations are complete and self-consistent systems that can
be handled numerically in the multiple potential applications of the Szekeres quasi–
spherical solution to model building in Cosmology and General Relativity.
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