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Abstract Using the invariant form of the equation of geodesic deviation, which
describes relative motion of free test particles, we investigate a general family of
D-dimensional Kundt spacetimes. We demonstrate that local influence of the gravi-
tational field can be naturally decomposed into Newton-type tidal effects typical for
type II spacetimes, longitudinal deformations mainly present in spacetimes of al-
gebraic type III, and type N purely transverse effects corresponding to gravitational
waves with 1

2 D(D−3) independent polarization states. We explicitly study the most
important examples, namely exact pp-waves, gyratons, and VSI spacetimes. This
analysis helps us to clarify the geometrical and physical interpretation of the Kundt
class of nonexpanding, nontwisting and shearfree geometries.

1 Geometry of Kundt spacetimes

The scalars Θ (expansion), A2 (twist) and σ2 (shear) characterizing optical proper-
ties of an affinely parameterized geodesic null congruence ka are

Θ =
1

D−2
ka

;a , A2 =−k[a;b]k
a;b , σ2 = k(a;b)k

a;b − 1
D−2

(ka
;a)

2 . (1)

Purely geometric definition of the Kundt family of spacetimes, namely that it admits
nonexpanding (Θ = 0), nontwisting (A = 0) and shearfree (σ = 0) such a congru-
ence, implies that there exist suitable coordinates in which the line element of any
Kundt spacetime can be written as [1, 2, 3, 4, 5]

ds2 = gi j(u,x)dxidx j +2gui(r,u,x)dxidu−2dudr+guu(r,u,x)du2 . (2)
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The coordinate r is the affine parameter along the congruence ka = ∂r, u = const.
are null (wave)surfaces, and x ≡ (x2,x3, . . . ,xD−1) are D−2 spatial coordinates in
the transverse Riemannian space. Notice that the spatial part gi j of the metric must
be independent of r, all other metric components gui and guu can, in principle, be
functions of all the coordinates (r,u,x). No specific Einstein field equations have
been employed yet.

For such most general Kundt line element (2) a lengthy calculation gives the
following components of the Riemann curvature tensor

Rrprq = 0 , (3)
Rrpru = − 1

2 gup,rr , (4)

Rruru = − 1
2 guu,rr +

1
4 gi jgui,rgu j,r , (5)

Rrpkq = 0 , (6)

Rrpuq = 1
2 gup,rq +

1
4 gup,rguq,r − 1

4 gi jgui,r
(
2g j(p,q)−gpq, j

)
, (7)

Rrupq = gu[p,q],r , (8)

Rruup = gu[u,p],r +
1
4 grigup,rgui,r − 1

4 gi jgui,r
(
2g j(u,p)−gup, j

)
, (9)

Rkplq = SRkplq , (10)
Rupkq = gp[k,q],u −gu[k,q],p

+ 1
4

[
guk,r

(
gpq,u −2gu(p,q)

)
−guq,r

(
gpk,u −2gu(p,k)

)]
+ 1

4 gri
[
guk,r

(
2gi(p,q)−gpq,i

)
−guq,r

(
2gi(p,k)−gpk,i

)]
+ 1

4 gi j
(
2g j(u,q)−guq, j

)(
2gi(p,k)−gpk,i

)
− 1

4 gi j
(
2g j(u,k)−guk, j

)(
2gi(p,q)−gpq,i

)
, (11)

Rupuq = gu(p,q),u − 1
2 (gpq,uu +guu,pq)+

1
4 grrgup,rguq,r

− 1
4 guu,r

[
2gu(p,q)−gpq,u −gri

(
2gi(p,q)−gpq,i

)]
+ 1

4 gup,r
[
guu,q −gri

(
2gi(u,q)−guq,i

)]
+ 1

4 guq,r
[
guu,p −gri

(
2gi(u,p)−gup,i

)]
+ 1

4 gi j
(
2g j(u,p)−gup, j

)(
2gi(u,q)−guq,i

)
− 1

4 gi j (2gu j,u −guu, j)
(
2gi(p,q)−gpq,i

)
, (12)

where i, j,k, l, p,q denote the spatial components (and derivatives w.r.t.) x. The su-
perscript “ S” labels tensor quantities corresponding to the spatial metric gi j, with
derivatives taken only with respect to the coordinates x. The components of the
Ricci tensor are

Rrr = 0 , (13)
Rrk = − 1

2 guk,rr , (14)

Rru = − 1
2 guu,rr +

1
2 grigui,rr +

1
2 gpqgup,rq

+ 1
2 gpqgup,rguq,r − 1

4 gpqgi jgui,r (2g jp,q −gpq, j) , (15)
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Rpq = SRpq −gu(p,q),r − 1
2 gup,rguq,r +

1
2 gklguk,r

(
2gl(p,q)−gpq,l

)
, (16)

Ruu = − 1
2 grrguu,rr −2grigu[u,i],r +

1
2 gpq (2gup,uq −gpq,uu −guu,pq)

− 1
2 grpgrqgup,rguq,r +

1
2 grrgpqgup,rguq,r +

1
2 gpqgrigup,r(2gq(u,i)−gui,q)

− 1
4 gpqguu,r

[
2gup,q −gpq,u −gri (2gip,q −gpq,i)

]
+ 1

2 gpqgup,r
[
guu,q −gri

(
2gi(u,q)−guq,i

)]
+ 1

4 gpqgi j
(
2g j(u,p)−gup, j

)(
2gi(u,q)−guq,i

)
− 1

4 gpqgi j (2gu j,u −guu, j)(2gip,q −gpq,i) , (17)

Ruk = − 1
2 grrguk,rr −gu[u,k],r +gri(gu[i,k],r −gk[u,i],r)

+gpq(gp[k,q],u −gu[k,q],p)− 1
2 griguk,rgui,r

+ 1
4 gpqgri

[
4guq,rgk[p,i]+guk,r(2gi(p,q)−gpq,i)

]
+ 1

4 gpq
[
2gup,rguq,k −guk,r(2gup,q −gpq,u)

]
+ 1

4 gpqgi j
(
2g j(u,q)−guq, j

)(
2gi(p,k)−gpk,i

)
− 1

4 gpqgi j
(
2g j(u,k)−guk, j

)
(2gip,q −gpq,i) , (18)

and the Ricci scalar curvature of the Kundt spacetime (2) is given by

R = SR+guu,rr −2grigui,rr −2gpqgup,rq

− 3
2 gpqgup,rguq,r +gpqgklguk,r(2gl p,q −gpq,l) . (19)

2 Applying the field equations

So far we have not specified the matter content of the spacetimes. Now, following
the approach presented in [4], we can determine the r-dependence of the metric (2)
using the Einstein field equations Rab − 1

2 Rgab +Λgab = 8πTab. Since Rrr = 0 and
grr = 0, there is an obvious restriction on the energy-momentum tensor allowed in
the Kundt family, namely Trr = 0. Assuming Trk = 0, we can directly integrate the
Einstein equation Rrk = 0 with (14), yielding guk linear in r. Using the field equation
Rru +

1
2 R−Λ = 8πTru, this implies that the component Tru must be independent of

r. Taking the trace of Einstein’s equations we can also determine the r-dependence
of guu: if the trace T of energy-momentum tensor Tab does not depend on the co-
ordinate r, the metric function guu can only be (at most) quadratic in r, see (19).
Under these conditions

ds2 = gi j dxidx j +2(ei + fi r)dxidu−2dudr+(ar2 +br+ c)du2 , (20)

where all the functions gi j,ei, fi,a,b and c are independent of r, and are constrained
by the specific Einstein equations [4]. In particular, any vacuum Kundt metric, pos-
sibly with a cosmological constant Λ and/or aligned electromagnetic field, can be
written in the form (20).
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3 Geodesic deviation in an arbitrary spacetime

In our recent work [6] we demonstrated that the equation of geodesic devia-
tion, which describes relative motion of nearby free test particles, can in any D-
dimensional spacetime be expressed in the invariant form

Z̈(1) =
2Λ

(D−2)(D−1)
Z(1)+Ψ2S Z(1)+

1√
2
(Ψ1T j −Ψ3T j)Z( j)

+
8π

D−2

[
T(1)(1) Z(1)+T(1)( j) Z( j)−

(
T(0)(0)+

2T
D−1

)
Z(1)

]
, (21)

Z̈(i) =
2Λ

(D−2)(D−1)
Z(i)−Ψ2T (i j) Z( j)+

1√
2
(Ψ1T i −Ψ3T i)Z(1)

−1
2
(Ψ0i j +Ψ4i j)Z( j)

+
8π

D−2

[
T(i)(1) Z(1)+T(i)( j) Z( j)−

(
T(0)(0)+

2T
D−1

)
Z(i)

]
, (22)

with i, j = 2, . . . ,D−1. Here Z(1),Z(2), . . . ,Z(D−1) are spatial components of the
separation vector ZZZ = Za eeea between the test particles in a natural interpretation
orthonormal frame {eeea} where eee(0) = uuu is the velocity vector of the fiducial test
particle (eeea · eeeb = ηab), Z̈(1), Z̈(2), . . . , Z̈(D−1) are the corresponding relative acceler-
ations, Tab are frame components of the energy-momentum tensor, and the scalars
ΨA... defined as

Ψ0i j = Cabcd ka mb
i kc md

j ,

Ψ1T i = Cabcd ka lb kc md
i , Ψ1i jk =Cabcd ka mb

i mc
j md

k ,

Ψ2S = Cabcd ka lb lc kd , Ψ2i jkl =Cabcd ma
i mb

j mc
k md

l ,

Ψ2T i j = Cabcd ka mb
i lc md

j , Ψ2i j =Cabcd ka lb mc
i md

j ,

Ψ3T i = Cabcd la kb lc md
i , Ψ3i jk =Cabcd la mb

i mc
j md

k ,

Ψ4i j = Cabcd la mb
i lc md

j , (23)

i, j,k, l = 2, . . . ,D−1, are components of the Weyl tensor with respect to the null
frame {kkk, lll,mmmi} associated with {eeea} via the relations kkk = 1√

2
(uuu+ eee(1)), lll = 1√

2
(uuu−

eee(1)), mmmi = eee(i), see figure 1.
Components of the Weyl tensor (23) are listed by their boost weight and di-

rectly generalize the standard Newman–Penrose complex scalars ΨA known from
the D = 4 case [7, 6]. In equations (21), (22), only the “electric part” of the Weyl
tensor represented by the scalars in the left column of (23) occurs, and there are
various constraints and symmetries, for example

Ψ1T i =Ψ1k k i , Ψ2S =
1
2Ψ2kl kl , Ψ2T (i j) = 1

2Ψ2ik j k , Ψ3T i =Ψ3k k i ,

Ψ0i j =Ψ0(i j) , Ψ0k k = 0 , Ψ4i j =Ψ4(i j) , Ψ4k k = 0 . (24)
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Fig. 1 Evolution of the
separation vector ZZZ that con-
nects particles moving along
geodesics γ(τ), γ̄(τ) is given
by the equation of geodesic
deviation (21) and (22). Its
components are expressed in
the orthonormal frame {eeea},
eee(0) = uuu. The associated null
frame {kkk, lll,mmmi} is also indi-
cated.

4 Geodesic deviation in Kundt spacetimes

For the general Kundt spacetime (2), the null interpretation frame adapted to an
arbitrary observer moving along a timelike geodesic γ(τ) with velocity uuu = ṙ ∂r +
u̇∂u + ẋi∂i takes the form

kkk =
1√
2 u̇

∂r , lll =
(√

2 ṙ− 1√
2 u̇

)
∂r +

√
2 u̇∂u +

√
2 ẋi∂i ,

mmmi =
1
u̇

m j
i (g ju u̇+g jk ẋk)∂r +m j

i ∂ j , (25)

where m j
i satisfy g jl m j

i ml
k = δik to fulfil mmmi ·mmmk = δik, kkk · lll =−1. Vector kkk is ori-

ented along the nonexpanding, nontwisting and shearfree null congruence ka = ∂r
defining the Kundt family. Moreover, uuu = 1√

2
(kkk+ lll) and eee(1) =

1√
2
(kkk− lll) =

√
2kkk−

uuu. The spatial vector eee(1) is thus uniquely determined by the geometrically privi-
leged null congruence of the Kundt family, and the observer’s velocity uuu. For this
reason we call such a special direction eee(1) longitudinal, while the D−2 directions
eee(i) = mmmi transverse.

In order to evaluate the scalars (23) we need to calculate the Weyl tensor

Cabcd = Rabcd −
2

D−2
(ga[c Rd]b −gb[c Rd]a)+

2Rga[c gd]b

(D−1)(D−2)
, (26)

using the components of the Riemann and Ricci tensors (3)–(19). We immediately
observe that Crprq = 0 which implies Ψ0i j = 0. Therefore, all Kundt spacetimes are
of algebraic type I, or more special, and ∂r is WAND.

Restricting now to the important subfamily (20) for which
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gui = ei(u,x)+ fi(u,x)r , guu = a(u,x)r2 +b(u,x)r+ c(u,x) , (27)

we obtain Rrpru = 0, Rrp = 0 which implies Crpru = 0, Crpkq = 0 so that Ψ1T i = 0,
Ψ1i jk = 0. Since all Weyl scalars of boost weights 2 and 1 vanish, the metric (20)
represents Kundt spacetimes of algebraic type II (or more special). Equations (21),
(22) for the geodesic deviation (omitting the frame components of Tab encoding the
direct influence of matter) in the case of the Kundt class of spacetimes (20) thus
simplify considerably to

Z̈(1) =
2Λ

(D−2)(D−1)
Z(1)+Ψ2S Z(1)− 1√

2
Ψ3T j Z( j) , (28)

Z̈(i) =
2Λ

(D−2)(D−1)
Z(i)−Ψ2T (i j) Z( j)− 1√

2
Ψ3T i Z(1)− 1

2
Ψ4i j Z( j) ,

where the only nonvanishing Weyl scalars are

Ψ2S = −Rruru +
2

D−2 Rru +
1

(D−1)(D−2)R ,

Ψ2T i j = mp
i mq

j

[
Rrpuq − 1

D−2 (gpqRru −Rpq)− 1
(D−1)(D−2)Rgpq

]
,

Ψ3T j =
√

2mp
j

{
ẋk[Rruru gkp −Rrkup −Rrukp − 1

D−2

(
gkpRru +Rkp

)]
+u̇

[
Rruru gup −Rruup − 1

D−2 (gupRru +Rup)
]}

,

Ψ4i j = 2mp
(im

q
j)

{
ẋkẋl[Rrpuq gkl −gpk(2Rrluq −glqRruru +2Rrulq)

+Rkplq − 1
D−2 gpq (gklRru +Rkl)

]
+2u̇ẋk[Rrpuq guk −gup(Rrkuq −Rruru gqk +Rrukq)

−Rruup gqk +Rupkq − 1
D−2 gpq(gukRru +Ruk)

]
+u̇2[Rrpuq guu −guq (2Rruup −gupRruru)+Rupuq

− 1
D−2 gpq (guuRru +Ruu)

]}
, (29)

and the components Rabcd are explicitly given by (5)–(12), Rab by (15)–(18), and
the Ricci scalar curvature R is given by (19).

The relative motion of free test particles in any Kundt spacetime (20) is thus
composed of the isotropic influence of the cosmological constant Λ , Newton-like
tidal deformations represented by Ψ2S, Ψ2T (i j) , longitudinal accelerations associated
with the direction +e(1) given by Ψ3T j , and by transverse gravitational waves prop-
agating along +e(1) encoded in the symmetric traceless matrix Ψ4i j , see (24). The
invariant amplitudes (29) combine the curvature of the Kundt spacetime with kine-
matics of the specific geodesic motion. In contrast to longitudinal and transverse
wave effects, the Newton-like deformations caused by Ψ2S and Ψ2T (i j) are indepen-
dent of the observer’s velocity components ẋi and u̇.

More details can be found in our recent publications [8, 9].
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5 Discussion of particular subfamilies

The Kundt class involves several physically interesting subfamilies, for example
pp-waves including gyratons and VSI spacetimes.

The pp-waves are defined by admitting a covariantly constant null vector field
ka [2, 3]. They thus belong to the Kundt class with all metric functions independent
of r, which is the metric (20) with fi = 0,a = 0 = b:

ds2 = gi j(u,x)dxidx j +2ei(u,x)dxidu−2dudr+ c(u,x)du2 . (30)

The components ei encode the possible presence of gyratonic matter.
The VSI spacetimes have the property that their scalar curvature invariants of all

orders vanish identically. As shown in [10], these spacetimes must be of the form
(20) with flat transverse space gi j = δi j:

ds2 = δi j dxidx j +2(ei + fi r)dxidu−2dudr+(ar2 +br+ c)du2 . (31)

It is straightforward to apply our general results (28) to these particular subcases
by evaluating the corresponding Weyl scalars (29) and discussing their specific in-
fluence on test particles. We have to restrict ourselves only to the simplest case
here,1 to vacuum VSI pp-waves without gyratons:

ds2 = δi j dxidx j −2dudr+ c(u,x)du2 . (32)

Since Λ = 0, Ψ2S = 0 =Ψ2T i j , Ψ3T j = 0, the geodesic deviation reduces to

Z̈(1) = 0 , Z̈(i) =− 1
2 Ψ4i j Z( j) . (33)

This clearly represents gravitational waves propagating along the spatial direc-
tion (1), with the test particles influenced only in the transverse directions (i) =
(2),(3), . . . ,(D−1). The elements of the symmetric and traceless (D−2)× (D−2)
matrix Ψ4i j = −u̇2 c,i j (where u̇ is a constant) directly encode the corresponding
wave amplitudes. Obviously, there are 1

2 D(D−3) independent polarization states.
Taking, e.g., a quadratic function c(x)≡ ∑D−1

i=2 Ai (xi)2 where the constants must
satisfy ∑D−1

i=2 Ai = 0, the wave-amplitude matrix becomes
Ψ4i j = −2u̇2 diag(A2,A3, . . .). Relative motion of (initially static) particles given
by (33) can be explicitly integrated: in the spatial directions with positive eigenval-
ues Ai > 0 they recede as Z(i)(τ) = Z(i)

0 cosh
(√

Ai |u̇|τ
)
, while with negative eigen-

values Ai < 0 they converge as Z(i)(τ) = Z(i)
0 cos

(√
Ai |u̇|τ

)
, and in the directions

where Ai = 0 the particles stay fixed, Z(i)(τ) = Z(i)
0 .

In principle, the presence of higher-dimensional components of gravitational
waves could be observed by detectors in our (1+3)-dimensional universe as the vio-
lation of the standard TT-property. Indeed, taking the simplest case D = 5, the ma-

1 A thorough discussion of other cases will follow in our subsequent paper.
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trix readsΨ4i j =−2u̇2 diag(A2,A3,A4) where A2 =−(A3 +A4). In the absence of
the higher-dimensional component, A4 = 0, an interferometer in our space detects
usual deformations shown in the left part of figure 2. But if A4 ̸= 0 then A2 ̸=−A3,
and a peculiar deformation, such as on the right part of figure 2, would be observed.

e(2)

(3)e

e(2)

(3)e

Fig. 2 Standard (left) and one of peculiar deformations of a detector indicating extension of the
gravitation wave into higher dimensions (right).
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