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Abstract I describe recent work with with Stefan Hollands that establishes a new
criterion for the dynamical stability of black holes in D ≥ 4 spacetime dimensions
in general relativity with respect to axisymmetric perturbations: Dynamical stability
is equivalent to the positivity of the canonical energy, E , on a subspace of linearized
solutions that have vanishing linearized ADM mass, momentum, and angular mo-
mentum at infinity and satisfy certain gauge conditions at the horizon. We further
show that E is related to the second order variations of mass, angular momentum,
and horizon area by E = δ 2M − ∑i Ωiδ 2Ji − (κ/8π)δ 2A, thereby establishing a
close connection between dynamical stability and thermodynamic stability. Ther-
modynamic instability of a family of black holes need not imply dynamical insta-
bility because the perturbations towards other members of the family will not, in
general, have vanishing linearized ADM mass and/or angular momentum. How-
ever, we prove that all black branes corresponding to thermodynmically unstable
black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also
prove that positivity of E is equivalent to the satisfaction of a “local Penrose in-
equality,” thus showing that satisfaction of this local Penrose inequality is necessary
and sufficient for dynamical stability.

It is of considerable interest to determine the linear stablity of black holes in (D-
dimensional) general relativity. It is also of interest to determine the linear stability
of the corresponding black branes in (D+ p)-dimensions, i.e., spacetimes with met-
ric of the form

ds̃2
D+p = ds2

D +
p

∑
i=1

dz2
i , (1)

where ds2
D is a black hole metric. In this paper, I will describe some recent gen-

eral results, obtained in collaboration with Stefan Hollands, on the stability of black
holes and black branes. In our work, we restrict consideration to vacuum general
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relativity without a cosmological constant, but our methods are applicable general
theories of gravity derived from a diffeomorphism covariant Lagrangian. A full ac-
count of our results can be found in [1].

One can analyze the stability of a black hole or black brane by writing out the
linearized Einstein equation off of the black hole or black brane background space-
time. One can establish linear stability by finding a positive definite conserved norm
for perturbations. Linear instability can be established by finding a solution with
(gauge independent) unbounded growth in time. However, even in the very simplest
cases—such as the Schwarzschild black hole [2, 3] and the Schwarzschild black
string [4]—it is quite nontrivial to carry out the decoupling of equations and the fix-
ing of gauge needed to determine stability or instability directly from the equations
of motion. Furthermore, since this analysis depends on the details of the equations
of motion, it must be done on a case-by-case basis. Thus, it would be useful to have
a much simpler criterion for stability that can be applied to any black hole or black
brane.

In ordinary thermodynamics, one has a very simple and general criterion for ther-
modynamic instability of a homogeneous system in thermal equilibrium. Consider
such a system, whose entropy, S, is a function of energy, E, and other extensive state
parameters Xi, so that S = S(E,Xi). The condition for thermodynamic instability is
that the Hessian matrix

HS =

(
∂ 2S
∂E2

∂ 2S
∂Xi∂E

∂ 2S
∂E∂Xi

∂ 2S
∂Xi∂X j

)
. (2)

admit a positive eigenvalue1. This criterion arises from the fact that if the Hessian
had a positive eigenvalue, then one could increase total entropy by exchanging E
and/or Xi between different parts of the system. To see this more explicitly, let ξ 0 =
(E0,Xi0) denote the parameter values of a particular thermodynamic state, let v be an
arbitrary vector in the thermodynamic state space, and consider the one-parameter
family ξ (λ ) = ξ 0 +λv of thermodynamic states. It is obvious that for this family,
we have d2E/dλ 2 = d2Xi/dλ 2 = 0, whereas d2S/dλ 2|0 = HessS|ξ 0

(v,v). Suppose
now that, for our homogeneous system, we change the state parameters by λv in one
part of the system and compensate for this by changing the state parameters by −λv
in a different part of the system (of the same “size”). To first order in λ , there will
be no change in the total entropy. To second order in λ , the change in total entropy
will be proportional to HessS|ξ 0

(v,v). Thus, if HS admits a positive eigenvalue, one
can choose v so as to find a state of higher entropy at fixed (E,Xi) arbitrarily close
to the original thermal equilibrium state.

An equivalent statement of the criterion for thermodynamic instability of the state
ξ 0 = (E0,Xi0) is (assuming T > 0) that one can find a one parameter family ξ (λ )
of thermal equilibrium states with ξ (0) = ξ 0 such that

δ 2E −T δ 2S−∑
i

Yiδ 2Xi < 0 (3)

1 Note that for the case where E is the only state parameter, this criterion is equivalent to the system
having a negative heat capacity
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where Yi ≡ (∂E/∂Xi)S and δ 2 denotes d2/dλ 2 evaluated at λ = 0. To see this,
we note that for a one parameter family of the form ξ 0 + λv, the left side is just
−T HessS|ξ 0

(v,v). However, by the first law of thermodynamics (i.e., the definitions
of Yi and T−1 ≡ (∂S/∂E)Xi), the left side does not depend on the second order
change in the state, so eq.(3) holds for the family ξ (λ ) if and only if it holds for the
family ξ 0 +λv with v = dξ/dλ |0.

Black holes are thermodynamic systems, with

E ↔ M

S ↔ A
4

(4)

Xi ↔ Ji,Qi

Thus, in the vacuum case (Qi = 0) a black hole would be said to be thermodynami-
cally unstable if the Hessian matrix

HA =

(
∂ 2A
∂M2

∂ 2A
∂Ji∂M

∂ 2A
∂M∂Ji

∂ 2A
∂Ji∂J j

)
. (5)

admits a positive eigenvalue. This is equivalent to finding a perturbation for which

δ 2M− κ
8π

δ 2A−∑
i

Ωiδ 2Ji < 0 . (6)

One might expect that this condition for thermodynamic instability might imply
dynamical instability. However, this is clearly false: The Schwarzschild black hole
has negative heat capacity (A = 16πM2, so ∂ 2A/∂M2 = 32π > 0) but is well known
to be dynamically stable. A black hole is not “homogeneous” in a manner that would
allow one to borrow energy and/or angular momentum from one part of it and give
it to another part in such a way as to increase the total entropy (area) at fixed total
energy and angular momentum in the manner described above for thermodynamic
systems.

However, a black brane is potentially homogeneous in this sense, and the Schwarz-
schild black string is known to be unstable [4]. The Gubser-Mitra conjecture [5], [6]
states that the above thermodynamic criterion for instability is a valid criterion dy-
namical instability for black branes. As described further below, our work provides
a proof of the Gubser-Mitra conjecture, which follows as a consequence of a more
fundamental stability criterion that we shall establish.

Another simple possible stability criterion that is applicable to black holes is the
“local Penrose inequality,” discussed in [7]. We reformulate this criterion as follows:
Suppose one has a family of stationary, axisymmetric black holes parametrized by
M and angular momenta J1, . . . ,JN . Consider a one-parameter family gab(λ ) of axi-
symmetric spacetimes, with gab(0) being a member of this family with surface grav-
ity κ > 0. Consider initial data on a hypersurface Σ passing through the bifurcation
surface B. By the linearized Raychauduri equation, to first order in λ , the event
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horizon coincides with the apparent horizon on Σ . They need not coincide to sec-
ond order in λ , but since B is an extremal surface in the background spacetime, their
areas must agree to second order. Let A (λ ) denotes the area of the apparent horizon
of gab(λ ), and let Ā(λ ) denote the area of the event horizon of the stationary black
hole in the family with the same mass and angular momentum as gab(λ ). Suppose
that to second order, we have

δ 2A > δ 2Ā

Since (i) the area of the event horizon can only increase with time (by cosmic cen-
sorship), (ii) the final mass of the black hole cannot be larger than the initial total
mass (by positivity of Bondi flux), (iii) its final angular momenta must equal the
initial angular momenta (by axisymmetry), and (iv) Ā(M,J1, . . . ,JN) is an increas-
ing function of M at fixed Ji (by the first law of black hole mechanics with κ > 0),
it follows that there would be a contradiction if the perturbed black hole solution
were to settle down to a stationary black hole in the family. This implies that satis-
faction of this inequality implies instablity—although it does not imply stability if
δ 2A ≤ δ 2Ā always holds. As discussed further below, our more fundamental stabil-
ity criterion implies that satisfaction of δ 2A ≤ δ 2Ā is necessary and sufficient for
the dynamical stability of black holes with respect to axisymmetric perturbations.

Our results are based upon identities arising from the Lagrangian formulation of
general relativity. Although we restrict consideration here to vacuum general rela-
tivity, these formulas can be generalized to allow for the presence of matter fields
and, indeed, they can be generalized to an arbitrary diffeomorphism covariant theory
of gravity [8], provided only that the field equations are derived from a Lagrangian.
The key identities we use are obtained as follows:

The Lagrangian D-form for vacuum general relativity in D dimensions is

La1...aD =
1

16π
R εa1...aD . (7)

Its first variation yields
δL = E ·δg+dθ , (8)

where E = 0 is the vacuum Einstein field equation and the (D−1)-form θ(g,δg) is
the “boundary term” that is usually discarded when the variation of L is performed
under an integral sign. Explicitly, we have

θa1...aD−1 =
1

16π
gacgbd(∇dδgbc −∇cδgbd)εaa1...aD−1 . (9)

The symplectic current (D−1)-form is defined by

ω(g;δ1g,δ2g) = δ1θ(g;δ2g)−δ2θ(g;δ1g) . (10)

The symplectic form, WΣ (g;δ1g,δ2g), is obtained by integrating ω over a Cauchy
surface Σ

WΣ (g;δ1g,δ2g)≡
∫

Σ
ω(g;δ1g,δ2g) . (11)
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It can be shown to be given by [9]

WΣ (g;δ1g,δ2g) =− 1
32π

∫
Σ
(δ1habδ2 pab −δ2habδ1 pab) , (12)

where
pab ≡ h1/2(Kab −habK) , (13)

where Kab is the extrinsic curvature of Σ .
The Lagrangian L, eq.(7), is diffeomorphism covariant. An arbitrary vector field

Xa is the generator of an infinitesimal diffeomorphism, and associated to Xa is a
conserved Noether current (D−1)-form, defined by

JX ≡ θ(g,LX g)−X ·L , (14)

where X ·L denotes the (D−1)-form XaLaa1...aD−1 . It can be shown quite generally
[10] that JX always can be written in the form

JX = X ·C+dQX , (15)

where C = 0 are the constraint equations [11] of the theory, and where the (D−2)-
form QX is called the Noether charge.

We now take the first variation of JX , using eqs.(14) and (15) as well as eqs.(8)
and (10). We thereby obtain the following fundamental variational identity:

ω(g;δg,LX g) = X · [E(g) ·δg]+X ·δC+d [δQX (g)−X ·θ(g;δg)] (16)

It should be emphasized that eq.(16) holds for an arbitrary metric gab (not neces-
sarily a solution to the field equations), an arbitrary metric perturbation δgab (not
necessarily a solution to the linearized field equations) and an arbitrary vector field
Xa.

By definition, a Hamiltonian, hX , for the “time evolution” generated by Xa is a
function on phase space whose first variation satisfies

δhX =WΣ (g;δg,LX g) (17)

if and only if gab satisfies the equations of motion E = 0. By eq.(16), if a Hamilto-
nian hX conjugate to Xa exists, its first variation must satisfy

δhX =
∫

Σ
(X ·δC+d [δQX (g)−X ·θ(g;δg)]) (18)

For asymptotically flat spacetimes, this motivates the definition of the ADM con-
served quantity, HX , associated with an asymptotic symmetry Xa, as the quantitiy
defined for solutions whose first variation is given by

δHX =
∫

∞
[δQX (g)−X ·θ(g;δg)] (19)
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Now consider a stationary black hole solution (E = 0) with surface gravity κ > 0,
so the event horizon is of “bifurcate type,” with bifurcation surface B. Let Σ be a
Cauchy surface for the exterior region, so that it extends from spatial infinity to B.
We choose X to be the horizon Killing field

Ka = ta +∑Ωiϕ a
i . (20)

Finally, let γ = δg satisfy the linearized constraint equations δC = 0. Integration of
the fundamental identity (16) over Σ—using LX g = 0, E = 0, and δC = 0—then
yields the first law of black hole mechanics [8]

0 = δM−∑
i

ΩiδJi −
κ
8π

δA . (21)

To proceed further, we impose two gauge conditions at B on our perturbation
γ = δg. The first condition

δϑ |B = 0 (22)

ensures that the location of the horizon does not change to first order. (Here ϑB
denotes the expansion of the outgoing null geodesics from B.) The second condition
is

δε|B =
δA
A

ε , (23)

where ε|B denotes the surface area element on B. The imposition of these condi-
tions does not involve any loss of generality, i.e., they can be imposed for arbitrary
perturbations [1].

We define the canonical energy of a perturbation γ by

E ≡WΣ (g;γ,Ltγ) . (24)

The second variation of our fundamental identity (16) then yields (for axisymmetric
perturbations)

E = δ 2M−∑
i

Ωiδ 2Ji −
κ
8π

δ 2A . (25)

Thus positivity of E for all perturbations γ is equivalent to thermodynamic stability
(see eq.(6)).

Our results on dynamical stability follow from various properties of E . To es-
tablish these properties, it is useful to view E as a quadratic form on perturbations

E (γ1,γ2) =WΣ (g;γ1,Ltγ2) (26)

In [1], we proved that E satisfies the following properties:

• E is conserved, i.e., it takes the same value if evaluated on another Cauchy sur-
face Σ ′ extending from spatial infinity to B.

• E is symmetric, E (γ1,γ2) = E (γ2,γ1).
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• When restricted to perturbations for which δA = 0 and δPi = 0 (where Pi is the
ADM linear momentum), E is gauge invariant.

• When restricted to the subspace, V , of perturbations for which δM = δJi =
δPi = 0 (and hence, by the first law of black hole mechanics δA = 0), we have
E (γ ′,γ) = 0 for all γ ′ ∈ V if and only if γ is a perturbation towards another
stationary and axisymmetric black hole.

Thus, if we restrict to perturbations in the subspace, V ′, of perturbations in
V modulo perturbations towards other stationary black holes, then E is a non-
degenerate quadratic form. Consequently, on V ′, either (a) E is positive definite
or (b) there is a ψ ∈ V ′ such that E (ψ)< 0. If (a) holds, then E provides a positive
definite conserved norm on perturbations. Thus, if (a) holds, we have stability.

To analyze case (b), we must consider the flux of E through null infinity, I +,
and through the black hole horizon, H . Let δNab denote the perturbed Bondi news
tensor at null infinity and let δσab denote the perturbed shear on the horizon. If
the perturbed black hole were to “settle down” to another stationary black hole at
late times, then δNab → 0 and δσab → 0 at late times. In [1], we showed that—for
axisymmetric perturbations—the change in canonical energy is then given by

∆E =− 1
16π

∫
I

δ Ñcdδ Ñcd − 1
4π

∫
H
(Ka∇au) δσcdδσ cd ≤ 0 . (27)

Thus, E can only decrease. Therefore if one has a perturbation ψ ∈ V such that
E (ψ)< 0, then ψ cannot “settle down” to a stationary solution at late times because
E = 0 for stationary perturbations with δM = δJi = δPi = 0. Thus, in case (b) we
have instability.

The above results show that the necessary and sufficient condition for stability of
a black hole (or black brane) with respect to axisymmetric perturbations is positivity
of E on a Hilbert space, V , of perturbations with vanishing perturbed mass, angular
momentum, and linear momentum, δM = δJi = δPi = 0. This is our fundamental
criterion for the dynamical stability of black holes and black branes. In view of
eqs.(25) and (6), it follows that dynamical stability is equivalent to thermodynamic
stability on the subspace of perturbations that satisfy δM = δJi = δPi = 0.

The restriction that δM = δJi = δPi = 0 can be removed for the case of black
branes as a consequence of the following theorem [1]:

Theorem 1. Suppose a family of black holes parametrized by (M,Ji) is thermo-
dynamically unstable at (M0,J0i), i.e., there exists a perturbation within the black
hole family for which E < 0. Then, for any black brane corresponding to (M0,J0i)
one can find a sufficiently long wavelength perturbation for which Ẽ < 0 and
δM̃ = δ J̃i = δ P̃i = δ Ã = δ T̃i = 0 (where T̃i denotes the momenta conjugate to the
translational symmetries of the brane).

This theorem is proven by starting with the initial data for the perturbation to
another black hole with E < 0, multiplying it by exp(ikz)—where “z” denotes a
brane coordinate as in eq.(1)—and then re-adjusting the initial data so that it satisfies
the constraints. The new data will automatically satisfy δM̃ = δ J̃A = δ P̃i = δ Ã =
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δ T̃i = 0 because of the exp(ikz) factor. For sufficiently small k, it can be shown to
satisfy Ẽ < 0.

The above theorem, together with our fundamental criterion for dynamical sta-
bility, proves the Gubser-Mitra conjecture. To illustrate the nature of this result,
consider the one-parameter family of Schwarzschild black holes, parametrized by
mass M. It is easily seen that the “change of mass” perturbation has E < 0. How-
ever, this tells one nothing about the stability of Schwarzschild black holes because,
obviously, for these perturbations we have δM ̸= 0, so they do not “count” for test-
ing stability of the Schwarzschild black hole. However, the fact that E < 0 for this
“change of mass” perturbation proves the instability of Schwarzschild black branes
to sufficiently long wavelength perturbations.

The equivalence of the satisfaction of the local Penrose inequality to our fun-
damental stability criterion for black holes can be seen as follows. As above, let
ḡab(M,Ji) be a family of stationary, axisymmetric, and asymptotically flat black
hole metrics on M. Let gab(λ ) be a one-parameter family of axisymmetric met-
rics such that gab(0) = ḡab(M0,J0i). Let M(λ ),Ji(λ ) denote the mass and angu-
lar momenta of gab(λ ) and let A (λ ) denote the area of its apparent horizon. Let
ḡab(λ ) = ḡab(M(λ ),Ji(λ )) denote the one-parameter family of stationary black
holes with the same mass and angular momenta as gab(λ ). We have the following
result:

Theorem 2. There exists a one-parameter family gab(λ ) for which

A (λ )> ¯A (λ ) (28)

to second order in λ if and only if there exists a perturbation γ ′ab of ḡab(M0,(J0i)
with δM = δJi = δPi = 0 such that E (γ ′)< 0.

Proof. The first law of black hole mechanics implies A (λ ) = ¯A (λ ) to first order in
λ , so what counts are the second order variations. Since the families have the same
mass and angular momenta, we have

κ
8π

[
d2A

dλ 2 (0)− d2 ¯A

dλ 2 (0)
]
= E (γ̄, γ̄)−E (γ,γ)

= −E (γ ′,γ ′)+2E (γ ′, γ̄)
= −E (γ ′,γ ′)

where γ ′ = γ̄ − γ . ⊓⊔

In summary, the remarkable relationship between the laws of black hole physics
and the laws of thermodynamics has been shown to extend to dynamical stability.

This research was sponsored in part by NSF grants PHY-0854807 and PHY-
1202718 to the University of Chicago.
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