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The problem

Given a solution to the Einstein vacuum constraint equations,
(S, hab, Kap), how do we know it is a slice of the Kerr spacetime?
If not, can we measure how much it differs?

We will introduce a geometric invariant on the slice, which will measure
this deviation from Kerr data.

The invariant is global on the slice, (but local in time).
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Background

Some applications

Expectation: A dynamical black hole settles down to a
Kerr/Schwarzschild black hole. To make sense of this one need to
measure how close data on a slice is to Kerr data.

Numerical Relativity

Measure how non-Kerrness evolves for numerical spacetimes.

Stability of Kerr

A coordinate independent integral over a slice is well suited.
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Background

Spacetime characterization

Spacetime characterization

Initial data characterization

Non-Kerrness invariant

Use a spacetime characterization based on Killing spinors — here
translated to Killing-Yano tensors.
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Background

Spacetime characterization

Let (M, g,.) be an orientable and time orientable globally hyperbolic
vacuum spacetime. V,, denotes the Levi-Civita connection of g,

Killing-Yano tensors

A Killing-Yano tensor Y, = Y[, satisfies
Vi Yoa =0. (1)
Given a Killing-Yano tensor, one automatically gets a Killing vector

& = €, V, Y, of the spacetime.
An integrability condition, will restrict the Weyl tensor.
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Results

Spacetime characterization

A smooth spacetime (M, g,.,,) is locally isometric to the Kerr spacetime
if and only if the following conditions are satisfied:

(i) there exists a Killing-Yano tensor Y,,,,, with associated Killing vector
Eu

(ii) the spacetime (M, g,..,) has a stationary asymptotically flat 4-end
with non-vanishing mass in which §,, tends to a time translation.
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Results

Theorem

Let (S, hap, Kap) be a vacuum initial data set, where S is a Cauchy
hypersurface. The development of the initial data set will have a
(conformal) Killing-Yano tensor in the domain of dependence of S if and
only if

Cab = D(atkip) — 2hapDar? + i€, Kpygrs = 0, (2a)
Fab= — C(acﬁb)cdﬁd =0, (2b)

are satisfied on S. Here, C,p, = E,p + iB,p.
Furthermore, these conditions gives a complex spacetime Killing vector.
Realness of this Killing vector gives a Killing-Yano tensor.
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Results

Approximate Killing-Yano tensors

We want to minimize the L2 norm of the left hand side of (2a):

J= / CapCPdp. (3)

s

The Euler-Lagrange equation reads
L(K’a) = DbCab - ieachbCbe =0. (4)

A solution, k,, to the elliptic equation (4) is called an approximate
spatial Killing-Yano tensor.

Clearly, any solution to (,, = 0 is also a solution to equation (4).
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Results

Theorem

Given an asymptotically Schwarzschildean initial data set (S, hap, Kap),
there exists a smooth unique solution to equation (4) with the same
asymptotic behaviour as the solution for Kerr.

Recent work: Also for compact domains.
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Results

The geometric invariant

Let x5 be a solution to equation (4) as given by the theorem above. With
J= [ canlan, (5)
s
h= [ FuFd (6)
s
the geometric invariant is defined by
I=J+h. (7)

By construction / is coordinate independent.
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Results

Main theorem

Theorem

Let (S, hap, Kap) be a vacuum initial data set with two asymptotically
Schwarzschildean ends. Let | be the invariant defined above, where k, is
the only solution to equation (4) with the same asymptotic behaviour as
the solution in the Kerr spacetime. The invariant | vanishes if and only if
the development of (S, hap, Kap) is locally isometric the Kerr spacetime.
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Results

Extra info

K, is the pullback of — 5t Y, + Le,ast” Y.
The Killing vector initial data is constructed from x, via
(=D (o= 3ePDekip + 2Kapk® — 3K prs. (8)
The constraints are
R =(K.°)? — KapK®®,  D?Kap = DpK?,. (9)
Initial data for the electric and magnetic parts of the Weyl tensor
Eap = KeaK s — KapKc + Rap,  Bap = —€%DcKag. (10)
The space time algebraic condition is

) ) ) )
0= — G’ Yols = ool 10 Y15 + COLniin Yors + COpapgn Yops - (11)
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