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Motivation

Spacetime may have a non-trivial micro-structure at the
Planck scale.
Look for its consequences through LSV (∃ a preferred
reference frame W a).
Why? Any spacetime granularity could be incompatible
with the Lorentz length contraction.
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Motivation

However...
1 There are very stringent bounds on LSV (Maccione et al.,

2009):

papa = −m2 − ξ

MP
(W · p)3 + · · · ; |ξ| ≤ 9× 10−10.

2 Collins et al. (2004) showed that radiative corrections
would magnify the effects of such granularity to a point
where they are discarded by experiments. Details

We study how a LS granular structure can become manifest.
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An analogy
There is no intuitive picture of how can a granular structure
respect LS, we turn to an analogy.
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The lesson from this analogy

In flat regions of spacetime, the symmetry of the granular
structure (LS) and the macroscopic symmetry coincide
⇒ the micro-structure cannot be detected through LSV.
In regions where Rabcd 6= 0 the macroscopic symmetry
deviate from LS⇒

Spacetime granularity could become manifest through
couplings of matter fields and Rabcd .
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Concrete coupling term

Rab is determined locally by Tab ⇒ coupling Rab to the
fields looks like a self-interaction⇒ focus on Rabcd without
Rab, i.e., Wabcd .
We focus on fermionic fields ψ.
We seek for coupling terms which are minimally
suppressed by MP .
The most obvious coupling term is (γa ≡ ea

µγ
µ)

Wabcd ψ̄γ
aγbγcγdψ ∝Wabcdε

abcd ψ̄γ5ψ = 0.

No more “obvious” dimension 5 coupling terms.
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Concrete coupling term

Let S be the space of 2-forms which inherits a
‘super-metric’ Gabcd = G[ab][cd ] from gab.

Weyl is a map S → S, we use λ(s) and the 2-forms X (s)
ab

such that

Wab
cdX (s)

cd = λ(s)X (s)
ab .

The proposed coupling term is

Lf = Habψ̄γ
aγbψ, Hab =

∑
s

ξ(s)

MP
λ(s)X (s)

ab .

Hab depends on the (dynamical) gravitational environment.
The proposal is covariant, super-renormalizable and Hab
vanishes when Rabcd = 0.
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Refining the initial proposal

This coupling has some problems:
1 Wab

cd is not hermitian (w.r.t. Gabcd )⇒

(W+)ab
cd = Wab

cd + W †
ab

cd
,

(W−)ab
cd = εab

ef
(

W †
ef

cd
−Wef

cd
)
,

where εabcd is the spacetime volume form.
2 X (s)

ab and εab
cdX (s)

cd always correspond to the same
eigenvalue⇒ Take the linear combinations Θ

(s)
ab s.t.

εabcd Θ
(s)
ab Θ

(s)
cd = 0, Gabcd Θ

(s)
ab Θ

(s)
cd = ±1.

3 The model is invariant under Θ
(s)
ab → −Θ

(s)
ab and the

physical setting is not⇒ Quadratic coupling term. Details
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Experimental Outlook

Locally, this coupling looks like a LV term that has been
studied in the SME.
Using the non-relativistic Hamiltonian of the SME
(Kosteleckỳ and Lane, 1999) we obtain

HNR =
3∑

i=1

(
ξ
(i)
A

MP
α(i)~σ · ~a(i) +

ξ
(i)
B

MP
β(i)~σ · ~b(i)

)
,

where the eigenvalues and eigenvectors ofW± are
encoded in α(i), β(i), ~a(i) and ~b(i). Details
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Experimental Outlook

Weyl is determined by tidal forces⇒ care when comparing
experiments in different places.
Only polarized probes are affected⇒ the setup has to be
insensible to ~B.
The first bounds where obtained by using a Hughes-Drever
experiment and the fact that the Sun gravitational effect on
Earth varies with a yearly period.
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Experimental Outlook

The Eöt-Wash Group (Heckel et al., 2006) developed
polarized probes that are insensible to ~B and they
performed an experiment to test the model (Terrano et al.,
2011), obtaining bounds for some of the parameters of the
electron sector. Details
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Summary

It is possible to study phenomenologically some
implications of a Lorentz respectful micro-structure of
spacetime.
A concrete and well-defined phenomenological proposal is
made involving non-trivial coupling of Weyl and fermions.
The proposal has been confronted with experiments.
Other consequences? Neutrinos?
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Spacetime granularity and LSV

Consider Yukawa theory Lint = gφψ̄ψ in spacetime s.t.
1 It is granular.
2 The granularity determines a preferential frame W a.

Assuming @ field’s modes shorter than the size of the
granularity lgran ∼ lP ⇒ momentum cutoff Λ ∝ l−1

gran.
For simplicity, this cutoff is implemented in the frame
associated with W a by

1
p2 −M2 + iε

→ f [|~p(W )|/Λ(W )]

p2 −M2 + iε
,

where f (0) = 1 and f (x ≥ 1) = 0.
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Spacetime granularity and LSV

The scalar self-energy takes the form

Π(p) = ξpapbWaWb + Π(LS)(p) +O(p4/Λ4),

where Π(LS) is the standard self-energy and

ξ =
g2

6π2

[
1 + 2

∫ ∞
0

dxx(f ′(x))2
]
.

ξ is independent of Λ and ξ ≥ g2/6π2.
Unless there is an extremely unnatural fine-tunning when
performing renormalization, the speed of light becomes
particle dependent to a point that is experimentally
discarded.
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The weak gravity regime

We consider gravity in the linearized regime and neglect
O(c−2).
If the gravitational source has a Newtonian potential ΦN
and momentum density ~p/c :

Aij = ∂i∂jΦN , Bij = 2∂(i(curl~π)j)/c,

where

~π = G
∫

~p(~x ′, t)
|~x − ~x ′|

d3x ′.

The eigenvalues and eigenvectors of Weyl can be encoded
in α(i), β(i), ~a(i) and ~b(i) s.t.

A~a(i) = α(i)~a(i), B~b(i) = β(i)~b(i).
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Bounds

Hab =
∑
α,β=±

∑
s,r

M(α,β,s,r)Σ
(α,β,s,r)
ab ,

M(α,β,s,r) = ξ(α,β,s,r)
(
|λ(α,s)|1/2

MP

)c(α,s) (
|λ(β,r)|1/2

MP

)c(β,r)

|λ(α,s)|
1/4
|λ(β,r)|

1/4
,

Σ
(α,β,s,r)
ab = gcdG(Θ(α,s),Θ(β,r))Θ

(α,s)
c[a Θ

(β,r)
b]d + · · · .
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