Dirac equation in curved spacetime and hidden symmetries

Marco Cariglia*, Pavel Krtouš, David Kubizňák

*ICEB, Universidade Federal de Ouro Preto, Minas Gerais, Brazil

Relativity and Gravitation 100 Years After Einstein in Prague Charles University, Prague, 29 June 2012

Generic relation between integrable systems
 ⇔ special tensors
 ⇔ hidden symmetries of dynamics

- Generic relation between integrable systems
 ⇔ special tensors
 ⇔ hidden symmetries of dynamics
- Application to the Dirac equation in curved space-time using Conformal Killing Yano tensors

- Generic relation between integrable systems
 ⇔ special tensors
 ⇔ hidden symmetries of dynamics
- Application to the Dirac equation in curved space-time using Conformal Killing Yano tensors
- Recent notable example: full separation of variables in higher dimensional rotating black hole metrics

Plan of the talk

Hidden Symmetries and the Dirac Equation

Rotating Black Holes in Higher Dimension

3 Future perspectives and conclusions

Plan of the talk

Hidden Symmetries and the Dirac Equation

2 Rotating Black Holes in Higher Dimension

3 Future perspectives and conclusions

1) Homogeneous Killing-Yano (KY) tensor:

- 1) Homogeneous Killing-Yano (KY) tensor:
 - Totally antisymmetric $f_{\mu_1...\mu_p} = f_{[\mu_1...\mu_p]}$ with

- 1) Homogeneous Killing-Yano (KY) tensor:
 - Totally antisymmetric $f_{\mu_1...\mu_p} = f_{[\mu_1...\mu_p]}$ with

$$abla_{\mu}(f_p)_{\nu_1...\nu_p} = \frac{1}{p+1} (df_p)_{\mu\nu_1...\nu_p}.$$

- 1) Homogeneous Killing-Yano (KY) tensor:
 - Totally antisymmetric $f_{\mu_1...\mu_p} = f_{[\mu_1...\mu_p]}$ with

$$abla_{\mu}(f_p)_{\nu_1...\nu_p} = \frac{1}{p+1} (df_p)_{\mu\nu_1...\nu_p}.$$

• $p = 1 \rightarrow \text{Killing vector}$

- 1) Homogeneous Killing-Yano (KY) tensor:
 - Totally antisymmetric $f_{\mu_1...\mu_p} = f_{[\mu_1...\mu_p]}$ with

$$abla_{\mu}(f_p)_{\nu_1...\nu_p} = \frac{1}{p+1} (df_p)_{\mu\nu_1...\nu_p}.$$

- $p = 1 \rightarrow$ Killing vector
- 2) Homogeneous Closed Conformal Killing Yano (CCKY) tensor:

- 1) Homogeneous Killing-Yano (KY) tensor:
 - Totally antisymmetric $f_{\mu_1...\mu_p} = f_{[\mu_1...\mu_p]}$ with

$$\nabla_{\mu}(f_p)_{\nu_1...\nu_p} = \frac{1}{p+1} (df_p)_{\mu\nu_1...\nu_p}.$$

- $p = 1 \rightarrow$ Killing vector
- 2) Homogeneous Closed Conformal Killing Yano (CCKY) tensor:

$$abla_{\mu}(h_p)_{\nu_1...\nu_p} = -rac{p}{n-p+1} g_{\mu[\nu_1}(\delta h_p)_{\nu_2...\nu_p]} \,,$$

n dimension of space-time.

- 1) Homogeneous Killing-Yano (KY) tensor:
 - Totally antisymmetric $f_{\mu_1...\mu_p} = f_{[\mu_1...\mu_p]}$ with

$$\nabla_{\mu}(f_p)_{\nu_1...\nu_p} = \frac{1}{p+1} (df_p)_{\mu\nu_1...\nu_p}.$$

- $p = 1 \rightarrow$ Killing vector
- 2) Homogeneous Closed Conformal Killing Yano (CCKY) tensor:

$$\nabla_{\mu}(h_p)_{\nu_1...\nu_p} = -\frac{p}{n-p+1} g_{\mu[\nu_1}(\delta h_p)_{\nu_2...\nu_p]},$$

n dimension of space-time.

Hodge duality: $KY \leftrightarrow CCKY$

- 1) Homogeneous Killing-Yano (KY) tensor:
 - Totally antisymmetric $f_{\mu_1...\mu_p} = f_{[\mu_1...\mu_p]}$ with

$$\nabla_{\mu}(f_p)_{\nu_1...\nu_p} = \frac{1}{p+1} (df_p)_{\mu\nu_1...\nu_p}.$$

- $p = 1 \rightarrow$ Killing vector
- 2) Homogeneous Closed Conformal Killing Yano (CCKY) tensor:

$$\nabla_{\mu}(h_p)_{\nu_1...\nu_p} = -\frac{p}{n-p+1} g_{\mu[\nu_1}(\delta h_p)_{\nu_2...\nu_p]},$$

n dimension of space-time.

Hodge duality: $KY \leftrightarrow CCKY$

CCKY tensors form an algebra under wedge product [Krtouš, Kubizňák, Page, Frolov 2007]

Operators that commute with D:

Symmetry operators for the massive Dirac equation

Operators that commute with D:

The most general first-order operator S which commutes with the Dirac operator D, [S,D]=0, splits into even and odd parts

Symmetry operators for the massive Dirac equation

Operators that commute with D:

The most general first-order operator S which commutes with the Dirac operator D, [S,D]=0, splits into even and odd parts

$$S = S_e + S_o$$
,

Symmetry operators for the massive Dirac equation

Operators that commute with D:

The most general first-order operator S which commutes with the Dirac operator D, [S,D]=0, splits into even and odd parts

$$S = S_{\rm e} + S_{\rm o} \,,$$

where

$$\begin{split} S_{\rm e} &= \sum_{p \text{ odd}} \frac{1}{(p-1)!} \Big[\gamma^{a_1 \dots a_{p-1}} (f_p)^b_{a_1 \dots a_{p-1}} \nabla_b + \frac{1}{2(p+1)^2} \gamma^{a_1 \dots a_{p+1}} (df_p)_{a_1 \dots a_{p+1}} \Big] , \\ S_{\rm o} &= \sum_{p \text{ odd}} \frac{1}{p!} \left[\gamma^{ba_1 \dots a_p} (h_p)_{a_1 \dots a_p} \nabla_b - \frac{p(n-p)}{2(n-p+1)} \gamma^{a_1 \dots a_{p-1}} (\delta h_p)_{a_1 \dots a_{p-1}} \right] , \end{split}$$

[Benn & Charlton 1997, Benn & Kress 2004], [Cariglia, Krtouš, Kubizňák 2011]

Plan of the talk

1 Hidden Symmetries and the Dirac Equation

2 Rotating Black Holes in Higher Dimension

3 Future perspectives and conclusions

• Rotating black holes in $n \ge 4$ with cosmological constant, spherical horizon

- Rotating black holes in $n \ge 4$ with cosmological constant, spherical horizon
- Generalise the Kerr metric in n = 4

- Rotating black holes in $n \ge 4$ with cosmological constant, spherical horizon
- Generalise the Kerr metric in n = 4
- Integrable systems: Hamilton-Jacobi, Klein-Gordon, Dirac, (spinning particle), stationary string, gravitational perturbations

- Rotating black holes in $n \ge 4$ with cosmological constant, spherical horizon
- Generalise the Kerr metric in n = 4
- Integrable systems: Hamilton-Jacobi, Klein-Gordon, Dirac, (spinning particle), stationary string, gravitational perturbations
- Tower of Killing vectors and CCKY tensors.

- Rotating black holes in $n \ge 4$ with cosmological constant, spherical horizon
- Generalise the Kerr metric in n = 4
- Integrable systems: Hamilton-Jacobi, Klein-Gordon, Dirac, (spinning particle), stationary string, gravitational perturbations
- Tower of Killing vectors and CCKY tensors. In $n = 2N + \epsilon$, $\epsilon = 0, 1$, there are $N + \epsilon$ Killing vectors $\xi^{(i)}$ and N CCKY tensors $h^{(j)} = h^{\wedge j}$

- Rotating black holes in $n \ge 4$ with cosmological constant, spherical horizon
- Generalise the Kerr metric in n = 4
- Integrable systems: Hamilton-Jacobi, Klein-Gordon, Dirac, (spinning particle), stationary string, gravitational perturbations
- Tower of Killing vectors and CCKY tensors. In $n = 2N + \epsilon$, $\epsilon = 0, 1$, there are $N + \epsilon$ Killing vectors $\xi^{(i)}$ and N CCKY tensors $h^{(j)} = h^{\wedge j}$
- Killing coordinates ψ_i , $i = 0, \dots, N-1+\epsilon$ + other coordinates x_μ , $\mu = 1, \dots, N$

Motivation

Why interesting?

Hamilton-Jacobi and Klein Gordon: known theorems for separation of variables

Motivation

Why interesting?

- Hamilton-Jacobi and Klein Gordon: known theorems for separation of variables
- Dirac: theory of separability not well established. However explicit separation of variables in Kerr-NUT-(A)dS achieved in [Oota, Yasui 2008].

Motivation

Why interesting?

- Hamilton-Jacobi and Klein Gordon: known theorems for separation of variables
- Dirac: theory of separability not well established. However explicit separation of variables in Kerr-NUT-(A)dS achieved in [Oota, Yasui 2008].
- Show separation for Dirac in Kerr-NUT-(A)dS is explained by a complete set of mutually commuting operators

Operators $K_k=K_{\xi^{(k)}}$ and $M_j=M_{\frac{1}{J!}h^{(j)}}$ include the Dirac operator $D=M_0$ and mutually commute [Cariglia, Krtouš, Kubizňák 2011] . They can be simultaneously diagonalised

$$K_k \xi = i \Psi_k \xi , \quad M_j \xi = \mathcal{X}_j \xi ,$$

Operators $K_k=K_{\xi^{(k)}}$ and $M_j=M_{\frac{1}{j!}h^{(j)}}$ include the Dirac operator $D=M_0$ and mutually commute [Cariglia, Krtouš, Kubizňák 2011] . They can be simultaneously diagonalised

$$K_k \xi = i \Psi_k \xi$$
, $M_j \xi = \mathcal{X}_j \xi$,

with the eigenfunction ξ in tensorial R-separated form

$$\xi = R \, \exp \! \left(i \textstyle \sum_k \Psi_k \psi_k \right) \, \bigotimes_{\nu} \chi_{\nu} \; , \label{eq:xi}$$

Operators $K_k=K_{\xi^{(k)}}$ and $M_j=M_{\frac{1}{j!}h^{(j)}}$ include the Dirac operator $D=M_0$ and mutually commute [Cariglia, Krtouš, Kubizňák 2011] . They can be simultaneously diagonalised

$$K_k \xi = i \Psi_k \xi$$
, $M_j \xi = \mathcal{X}_j \xi$,

with the eigenfunction ξ in tensorial R-separated form

$$\xi = R \exp(i \sum_{k} \Psi_{k} \psi_{k}) \bigotimes_{\nu} \chi_{\nu} ,$$

where ψ_k are Killing coordinates, $\{\chi_\nu\}$ is an *N*-tuple of 2-dimensional spinors and *R* is an *x* dependent Clifford bundle-valued prefactor.

Operators $K_k=K_{\xi^{(k)}}$ and $M_j=M_{\frac{1}{j!}h^{(j)}}$ include the Dirac operator $D=M_0$ and mutually commute [Cariglia, Krtouš, Kubizňák 2011] . They can be simultaneously diagonalised

$$K_k \xi = i \Psi_k \xi$$
, $M_j \xi = \mathcal{X}_j \xi$,

with the eigenfunction ξ in tensorial R-separated form

$$\xi = R \, \exp \left(i \sum_{k} \Psi_{k} \psi_{k} \right) \, \bigotimes_{\nu} \chi_{\nu} \; ,$$

where ψ_k are Killing coordinates, $\{\chi_\nu\}$ is an N-tuple of 2-dimensional spinors and R is an x dependent Clifford bundle-valued prefactor.

Dirac equation reduces to separate equations for each χ_{ν} spinor:

$$\left[\left(\frac{d}{dx_{\nu}} + \frac{X_{\nu}'}{4X_{\nu}} + \frac{\tilde{\Psi}_{\nu}}{X_{\nu}} \iota_{\langle \nu \rangle} + \frac{\epsilon}{2x_{\nu}} \right) \sigma_{\langle \nu \rangle} - \frac{\left(-\iota_{\langle \nu \rangle} \right)^{N-\nu}}{\sqrt{|X_{\nu}|}} \left(\epsilon \frac{i\sqrt{-c}}{2x_{\nu}^2} + \tilde{\mathcal{X}}_{\nu} \right) \right] \chi_{\nu} = 0 \,.$$

 $X_{\mu}(x_{\mu})$ are metric functions, $\iota_{\langle \nu \rangle}$ and $\sigma_{\langle \nu \rangle}$ Clifford bundle elements.

Operators $K_k=K_{\xi^{(k)}}$ and $M_j=M_{\frac{1}{j!}h^{(j)}}$ include the Dirac operator $D=M_0$ and mutually commute [Cariglia, Krtouš, Kubizňák 2011] . They can be simultaneously diagonalised

$$K_k \xi = i \Psi_k \xi$$
, $M_j \xi = \mathcal{X}_j \xi$,

with the eigenfunction ξ in tensorial R-separated form

$$\xi = R \, \exp \left(i \sum_{k} \Psi_{k} \psi_{k} \right) \, \bigotimes_{\nu} \chi_{\nu} \; ,$$

where ψ_k are Killing coordinates, $\{\chi_\nu\}$ is an N-tuple of 2-dimensional spinors and R is an x dependent Clifford bundle-valued prefactor.

Dirac equation reduces to separate equations for each χ_{ν} spinor:

$$\left[\left(\frac{d}{dx_{\nu}} + \frac{X_{\nu}'}{4X_{\nu}} + \frac{\tilde{\Psi}_{\nu}}{X_{\nu}} \iota_{\langle \nu \rangle} + \frac{\epsilon}{2x_{\nu}} \right) \sigma_{\langle \nu \rangle} - \frac{\left(-\iota_{\langle \nu \rangle} \right)^{N-\nu}}{\sqrt{|X_{\nu}|}} \left(\epsilon \frac{i\sqrt{-c}}{2x_{\nu}^2} + \tilde{\mathcal{X}}_{\nu} \right) \right] \chi_{\nu} = 0.$$

 $X_{\mu}(x_{\mu})$ are metric functions, $\iota_{\langle \nu \rangle}$ and $\sigma_{\langle \nu \rangle}$ Clifford bundle elements.

Same as solution found in [Oota, Yasui 2008]

Introduce new 'auxiliary' operators

$$\tilde{M}_j \equiv R^{-1} M_j R \,,$$

Introduce new 'auxiliary' operators

$$\tilde{M}_j \equiv R^{-1} M_j R \,,$$

then:

Intrinsic Separability of Dirac Equation 2

Introduce new 'auxiliary' operators

$$\tilde{M}_j \equiv R^{-1} M_j R \,,$$

then:

$$\ \, [\tilde{M}_j,\tilde{M}_k]=0$$

Intrinsic Separability of Dirac Equation 2

Introduce new 'auxiliary' operators

$$\tilde{M}_j \equiv R^{-1} M_j R \,,$$

then:

$$\bullet \ [\tilde{M}_i, \tilde{M}_k] = 0$$

a solution of

$$K_k \xi = i \Psi_k \xi$$
, $\tilde{M}_j \xi = \mathcal{X}_j \xi$

can be found in standard separated form (no R factor)

Intrinsic Separability of Dirac Equation 2

Introduce new 'auxiliary' operators

$$\tilde{M}_j \equiv R^{-1} M_j R \,,$$

then:

$$\bullet \ [\tilde{M}_i, \tilde{M}_k] = 0$$

a solution of

$$K_k \xi = i \Psi_k \xi , \quad \tilde{M}_j \xi = \mathcal{X}_j \xi$$

can be found in standard separated form (no R factor)

• operators \tilde{M}_j are operators M_j in the 'R-representation'

$$\tilde{\gamma}^a = R^{-1} \gamma^a R \,.$$

[Cariglia, Krtouš, Kubizňák 2011.2]

Plan of the talk

Hidden Symmetries and the Dirac Equation

2 Rotating Black Holes in Higher Dimension

3 Future perspectives and conclusions

• Generalisation to supergravity with flux:

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]
- relation with G-structures. KY forms in special holonomy manifolds: nearly Kähler, weak G_2 , balanced SU(n) [Papadopoulos 2008]

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]
- relation with G-structures. KY forms in special holonomy manifolds: nearly Kähler, weak G_2 , balanced SU(n) [Papadopoulos 2008]
- Eisenhart-Duval null dimensional reduction:

- Generalisation to supergravity with flux:
 - ▶ minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]
- relation with G-structures. KY forms in special holonomy manifolds: nearly Kähler, weak G_2 , balanced SU(n) [Papadopoulos 2008]
- Eisenhart-Duval null dimensional reduction:
 - ► Massless Dirac equation reduces to the non-relativistic Lévy-Leblond equation

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]
- relation with G-structures. KY forms in special holonomy manifolds: nearly Kähler, weak G_2 , balanced SU(n) [Papadopoulos 2008]
- Eisenhart-Duval null dimensional reduction:
 - ► Massless Dirac equation reduces to the non-relativistic Lévy-Leblond equation
 - ► In specific cases it can reduce to *fully relativistic* Dirac equation with scalar and vector flux

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]
- relation with G-structures. KY forms in special holonomy manifolds: nearly Kähler, weak G_2 , balanced SU(n) [Papadopoulos 2008]
- Eisenhart-Duval null dimensional reduction:
 - ► Massless Dirac equation reduces to the non-relativistic Lévy-Leblond equation
 - In specific cases it can reduce to fully relativistic Dirac equation with scalar and vector flux
 - ► Explain geometrically symmetriy operators with flux [Cariglia arXiv 2012]

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]
- relation with G-structures. KY forms in special holonomy manifolds: nearly Kähler, weak G_2 , balanced SU(n) [Papadopoulos 2008]
- Eisenhart-Duval null dimensional reduction:
 - ► Massless Dirac equation reduces to the non-relativistic Lévy-Leblond equation
 - ► In specific cases it can reduce to *fully relativistic* Dirac equation with scalar and vector flux
 - ► Explain geometrically symmetriy operators with flux [Cariglia arXiv 2012]
- Hidden symmetries in new contexts? Dumb holes, condensed matter?

- Generalisation to supergravity with flux:
 - minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole [Kubizňák, Kunduri, Yasui 2009]
 - Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric torsion [Houri, Kubizňák, Warnick, Yasui 2009]
- relation with G-structures. KY forms in special holonomy manifolds: nearly Kähler, weak G_2 , balanced SU(n) [Papadopoulos 2008]
- Eisenhart-Duval null dimensional reduction:
 - ► Massless Dirac equation reduces to the non-relativistic Lévy-Leblond equation
 - In specific cases it can reduce to fully relativistic Dirac equation with scalar and vector flux
 - ► Explain geometrically symmetriy operators with flux [Cariglia arXiv 2012]
- Hidden symmetries in new contexts? Dumb holes, condensed matter?
- Much more to be done!

Thank you!

Symmetry	operators for	the massless	Dirac equation

1) Operators that R-commute with D:

1) Operators that R-commute with D:

The most general first order symmetry operator S for D, satisfying [S,D]=RD for some R, is given by

1) Operators that R-commute with D:

The most general first order symmetry operator S for D, satisfying [S,D]=RD for some R, is given by

$$S = S_{\omega} + \alpha D ,$$

where α is an arbitrary inhomogeneous form, and S_ω is defined in terms of an inhomogeneous CKY form ω as

$$S_{\omega} \equiv rac{1}{2}ig(e^a\omega + \omega e^aig)
abla_a + rac{\pi-1}{2\pi}d\omega - rac{n-\pi-1}{2(n-\pi)}\delta\omega \; .$$

1) Operators that R-commute with D:

The most general first order symmetry operator S for D, satisfying [S,D]=RD for some R, is given by

$$S = S_{\omega} + \alpha D ,$$

where α is an arbitrary inhomogeneous form, and S_ω is defined in terms of an inhomogeneous CKY form ω as

$$S_{\omega} \equiv \frac{1}{2} \left(e^a \omega + \omega e^a \right) \nabla_a + \frac{\pi - 1}{2\pi} d\omega - \frac{n - \pi - 1}{2(n - \pi)} \delta\omega .$$

 e^a : vielbein form.

 π : degree function,

all form indices are implicitly contracted with Gamma matrices

1) Operators that R-commute with D:

The most general first order symmetry operator S for D, satisfying [S,D]=RD for some R, is given by

$$S = S_{\omega} + \alpha D ,$$

where α is an arbitrary inhomogeneous form, and S_ω is defined in terms of an inhomogeneous CKY form ω as

$$S_{\omega} \equiv rac{1}{2}ig(e^a\omega + \omega e^aig)
abla_a + rac{\pi-1}{2\pi}d\omega - rac{n-\pi-1}{2(n-\pi)}\delta\omega \; .$$

 e^a : vielbein form,

 π : degree function,

all form indices are implicitly contracted with Gamma matrices

The operator S_{ω} obeys

$$[S_{\omega}, D] = \left(\frac{1}{n-\pi}\delta\omega_{\rm o} - \frac{1}{\pi}d\omega_{\rm e}\right)D$$
.

1) Operators that R-commute with D:

The most general first order symmetry operator S for D, satisfying [S,D]=RD for some R, is given by

$$S = S_{\omega} + \alpha D ,$$

where α is an arbitrary inhomogeneous form, and S_ω is defined in terms of an inhomogeneous CKY form ω as

$$S_{\omega} \equiv rac{1}{2} ig(e^a \omega + \omega e^a ig)
abla_a + rac{\pi - 1}{2\pi} d\omega - rac{n - \pi - 1}{2(n - \pi)} \delta\omega \; .$$

 e^a : vielbein form,

 π : degree function,

all form indices are implicitly contracted with Gamma matrices

The operator S_{ω} obeys

$$[S_{\omega}, D] = \left(\frac{1}{n - \pi} \delta \omega_{\rm o} - \frac{1}{\pi} d\omega_{\rm e}\right) D.$$

If $D\psi = 0 \rightarrow D(S_{\omega}\psi) = 0$ [Benn & Charlton 1997, Benn & Kress 2004]