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Special Tensors for the Dirac equation

1) Homogeneous Killing-Yano (KY) tensor:

Totally antisymmetric fµ1...µp = f[µ1...µp] with

∇µ(fp)ν1...νp =
1

p + 1
(dfp)µν1...νp .

p = 1→ Killing vector
2) Homogeneous Closed Conformal Killing Yano (CCKY) tensor:

∇µ(hp)ν1...νp = − p
n− p + 1

gµ[ν1(δhp)ν2...νp] ,

n dimension of space-time.

Hodge duality: KY ↔ CCKY

CCKY tensors form an algebra under wedge product [Krtouš, Kubizňák, Page, Frolov
2007]
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Symmetry operators for the massive Dirac equation

Operators that commute with D:

The most general first-order operator S which commutes with the Dirac operator D,
[S,D] = 0, splits into even and odd parts

S = Se + So ,

where

Se =
∑
p odd

1
(p−1)!

[
γa1...ap−1(fp)b

a1...ap−1∇b +
1

2(p+1)2 γ
a1...ap+1(dfp)a1...ap+1

]
,

So =
∑

p even

1
p !

[
γba1...ap(hp)a1...ap∇b −

p(n−p)

2(n−p+1)
γa1...ap−1(δhp)a1...ap−1

]
,

[Benn & Charlton 1997, Benn & Kress 2004],
[Cariglia, Krtouš, Kubizňák 2011]
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Kerr-NUT-(A)dS black holes

Rotating black holes in n ≥ 4 with cosmological constant, spherical horizon

Generalise the Kerr metric in n = 4
Integrable systems: Hamilton-Jacobi, Klein-Gordon, Dirac, (spinning particle),
stationary string, gravitational perturbations
Tower of Killing vectors and CCKY tensors.
In n = 2N + ε, ε = 0, 1, there are N + ε Killing vectors ξ(i) and N CCKY tensors
h(j) = h∧j

Killing coordinates ψi, i = 0, . . . ,N− 1 + ε + other coordinates xµ, µ = 1, . . . ,N
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Motivation

Why interesting?
Hamilton-Jacobi and Klein Gordon: known theorems for separation of variables

Dirac: theory of separability not well established. However explicit separation of
variables in Kerr-NUT-(A)dS achieved in [Oota, Yasui 2008].
Show separation for Dirac in Kerr-NUT-(A)dS is explained by a complete set of
mutually commuting operators

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 8 / 14



Motivation

Why interesting?
Hamilton-Jacobi and Klein Gordon: known theorems for separation of variables
Dirac: theory of separability not well established. However explicit separation of
variables in Kerr-NUT-(A)dS achieved in [Oota, Yasui 2008].

Show separation for Dirac in Kerr-NUT-(A)dS is explained by a complete set of
mutually commuting operators

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 8 / 14



Motivation

Why interesting?
Hamilton-Jacobi and Klein Gordon: known theorems for separation of variables
Dirac: theory of separability not well established. However explicit separation of
variables in Kerr-NUT-(A)dS achieved in [Oota, Yasui 2008].
Show separation for Dirac in Kerr-NUT-(A)dS is explained by a complete set of
mutually commuting operators

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 8 / 14



Intrinsic Separability of Dirac Equation 1

Operators Kk = Kξ(k) and Mj = M 1
j! h(j) include the Dirac operator D = M0 and

mutually commute [Cariglia, Krtouš, Kubizňák 2011] . They can be simultaneously
diagonalised

Kkξ = i Ψkξ , Mjξ = Xjξ ,

with the eigenfunction ξ in tensorial R-separated form

ξ = R exp
(
i
∑

k Ψkψk
) ⊗

ν

χν ,

where ψk are Killing coordinates, {χν} is an N-tuple of 2-dimensional spinors and R
is an x dependent Clifford bundle-valued prefactor.
Dirac equation reduces to separate equations for each χν spinor:[( d

dxν
+

X′ν
4Xν

+
Ψ̃ν

Xν
ι〈ν〉 +

ε

2xν

)
σ〈ν〉 −

(
−ι〈ν〉

)N−ν√
|Xν |

(
ε

i
√
−c

2x2
ν

+ X̃ν
)]

χν = 0 .

Xµ(xµ) are metric functions, ι〈ν〉 and σ〈ν〉 Clifford bundle elements.
Same as solution found in [Oota, Yasui 2008]
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Intrinsic Separability of Dirac Equation 2

Introduce new ‘auxiliary’ operators

M̃j ≡ R−1Mj R ,

then:
[M̃j, M̃k] = 0
a solution of

Kkξ = i Ψkξ , M̃jξ = Xjξ

can be found in standard separated form (no R factor)
operators M̃j are operators Mj in the ‘R-representation’

γ̃a = R−1γaR .

[Cariglia, Krtouš, Kubizňák 2011.2]
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Recent developments and conclusions

Generalisation to supergravity with flux:
I minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole

[Kubizňák, Kunduri, Yasui 2009]
I Classification of metrics with rank 2 CCKY tensor with totally anti-symmetric

torsion [Houri, Kubizňák, Warnick, Yasui 2009]

relation with G-structures. KY forms in special holonomy manifolds: nearly
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torsion [Houri, Kubizňák, Warnick, Yasui 2009]

relation with G-structures. KY forms in special holonomy manifolds: nearly
Kähler, weak G2, balanced SU(n) [Papadopoulos 2008]

Eisenhart-Duval null dimensional reduction:
I Massless Dirac equation reduces to the non-relativistic Lévy-Leblond equation
I In specific cases it can reduce to fully relativistic Dirac equation with scalar and

vector flux
I Explain geometrically symmetriy operators with flux [Cariglia arXiv 2012]

Hidden symmetries in new contexts? Dumb holes, condensed matter?
Much more to be done!

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 12 / 14



Recent developments and conclusions

Generalisation to supergravity with flux:
I minimal supergravity in n = 5, example: Chong-Cvetic-Lu-Pope black hole
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Symmetry operators for the massless Dirac equation
1) Operators that R–commute with D:

The most general first order symmetry operator S for D, satisfying [S,D] = RD for
some R, is given by

S = Sω + αD ,

where α is an arbitrary inhomogeneous form, and Sω is defined in terms of an
inhomogeneous CKY form ω as

Sω ≡
1
2
(
eaω + ωea)∇a +

π − 1
2π

dω − n− π − 1
2(n− π)

δω .

ea: vielbein form,
π: degree function,
all form indices are implicitly contracted with Gamma matrices

The operator Sω obeys

[Sω,D] =
( 1

n− π
δωo −

1
π

dωe

)
D .

If Dψ = 0→ D(Sωψ) = 0 [Benn & Charlton 1997, Benn & Kress 2004]

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 14 / 14



Symmetry operators for the massless Dirac equation
1) Operators that R–commute with D:

The most general first order symmetry operator S for D, satisfying [S,D] = RD for
some R, is given by

S = Sω + αD ,

where α is an arbitrary inhomogeneous form, and Sω is defined in terms of an
inhomogeneous CKY form ω as

Sω ≡
1
2
(
eaω + ωea)∇a +

π − 1
2π

dω − n− π − 1
2(n− π)

δω .

ea: vielbein form,
π: degree function,
all form indices are implicitly contracted with Gamma matrices

The operator Sω obeys

[Sω,D] =
( 1

n− π
δωo −

1
π

dωe

)
D .

If Dψ = 0→ D(Sωψ) = 0 [Benn & Charlton 1997, Benn & Kress 2004]

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 14 / 14



Symmetry operators for the massless Dirac equation
1) Operators that R–commute with D:

The most general first order symmetry operator S for D, satisfying [S,D] = RD for
some R, is given by

S = Sω + αD ,

where α is an arbitrary inhomogeneous form, and Sω is defined in terms of an
inhomogeneous CKY form ω as

Sω ≡
1
2
(
eaω + ωea)∇a +

π − 1
2π

dω − n− π − 1
2(n− π)

δω .

ea: vielbein form,
π: degree function,
all form indices are implicitly contracted with Gamma matrices

The operator Sω obeys

[Sω,D] =
( 1

n− π
δωo −

1
π

dωe

)
D .

If Dψ = 0→ D(Sωψ) = 0 [Benn & Charlton 1997, Benn & Kress 2004]

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 14 / 14



Symmetry operators for the massless Dirac equation
1) Operators that R–commute with D:

The most general first order symmetry operator S for D, satisfying [S,D] = RD for
some R, is given by

S = Sω + αD ,

where α is an arbitrary inhomogeneous form, and Sω is defined in terms of an
inhomogeneous CKY form ω as

Sω ≡
1
2
(
eaω + ωea)∇a +

π − 1
2π

dω − n− π − 1
2(n− π)

δω .

ea: vielbein form,
π: degree function,
all form indices are implicitly contracted with Gamma matrices

The operator Sω obeys

[Sω,D] =
( 1

n− π
δωo −

1
π

dωe

)
D .

If Dψ = 0→ D(Sωψ) = 0 [Benn & Charlton 1997, Benn & Kress 2004]

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 14 / 14



Symmetry operators for the massless Dirac equation
1) Operators that R–commute with D:

The most general first order symmetry operator S for D, satisfying [S,D] = RD for
some R, is given by

S = Sω + αD ,

where α is an arbitrary inhomogeneous form, and Sω is defined in terms of an
inhomogeneous CKY form ω as

Sω ≡
1
2
(
eaω + ωea)∇a +

π − 1
2π

dω − n− π − 1
2(n− π)

δω .

ea: vielbein form,
π: degree function,
all form indices are implicitly contracted with Gamma matrices

The operator Sω obeys

[Sω,D] =
( 1

n− π
δωo −

1
π

dωe

)
D .

If Dψ = 0→ D(Sωψ) = 0 [Benn & Charlton 1997, Benn & Kress 2004]

Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 14 / 14



Symmetry operators for the massless Dirac equation
1) Operators that R–commute with D:

The most general first order symmetry operator S for D, satisfying [S,D] = RD for
some R, is given by

S = Sω + αD ,

where α is an arbitrary inhomogeneous form, and Sω is defined in terms of an
inhomogeneous CKY form ω as

Sω ≡
1
2
(
eaω + ωea)∇a +

π − 1
2π

dω − n− π − 1
2(n− π)

δω .

ea: vielbein form,
π: degree function,
all form indices are implicitly contracted with Gamma matrices

The operator Sω obeys

[Sω,D] =
( 1

n− π
δωo −

1
π

dωe

)
D .

If Dψ = 0→ D(Sωψ) = 0 [Benn & Charlton 1997, Benn & Kress 2004]
Marco Cariglia (UFOP) Hidden Symmetries Charles University, Prague, 29-06-2012 14 / 14


	Hidden Symmetries and the Dirac Equation
	Rotating Black Holes in Higher Dimension
	Future perspectives and conclusions

