Geometrostatics: The geometry of static spacetimes

Carla Cederbaum

Duke University

100 years after Einstein Prague June 25, 2012

Aim

Gain better understanding of static isolated relativistic systems:

- their geometry
- their asymptotics
- the behavior of test particles
- their total mass and center of mass
- their Newtonian limit

Static Isolated Gravitating Systems

Geometrostatics: static isolated gravitating systems with finitely extended sources

They model individual stars, black holes, and static configurations¹:

Lapse and 3-Metric

Generic static spacetimes can be canonically decomposed into $M^4 = \mathbb{R} \times M^3$.

$$^{4}g = -N^{2}c^{2}dt^{2} + {}^{3}g,$$

with induced Riemannian metric 3g on M^3 and

$$N := \sqrt{-{}^4g(X,X)} > 0$$

the lapse function of the static spacetime.

Here, *X* is the timelike hypersurface-orthogonal Killing vector.

PDEs of Geometrostatics (Vacuum Region)

The symmetry reduced (vacuum) Einstein equations on M^3 read

$$N^3 \text{Ric} = {}^3 \nabla^2 N$$

 ${}^3 \triangle N = 0.$

They are called the static metric equations.

Variables:

N lapse function (length of Killing vector),

³g induced Riemannian 3-metric,

³Ric induced Ricci curvature,

 $^{3}\nabla^{2}$ induced covariant Hessian,

³△ induced covariant Laplace-Beltrami operator.

Physical Interpretation

- $(M^3, {}^3g)$ is a time slice, i.e. the state of a static system at any point of time in the eyes of the chosen observer X
- N describes how to measure time in order to "see" staticity.

We claim:

- The level sets of *N* relate to the dynamics of test particles in the spacetime.
- N is unique (for a given static 3-metric ${}^{3}g$).

Equipotential Surfaces in Newtonian Gravity

A level set of the Newtonian potential U is called a equipotential surface in Newtonian Gravity.

Equipotential surfaces are the only surfaces $\Sigma \subseteq \mathbb{R}^3$ such that any test body constrained to Σ and not subject to any exterior forces is not accelerated.

Equipotential Surfaces in Geometrostatics

Definition

A surface $\Sigma \subset M^3$ is called an equipotential surface in $(M^3, {}^3g, N)$ if every constrained test particle (timelike 4-geodesic) of the form

$$\mu(\tau) = (t(\tau), x(\tau))$$

with $x(\tau) \in \Sigma$ inside the spacetime $(\mathbb{R} \times M^3, {}^4g = -N^2c^2dt^2 + {}^3g)$ is a geodesic in Σ with respect to the induced 2-metric.

The Role of the Level Sets of N

Theorem (C.)

A surface $\Sigma \subset M^3$ is an equipotential surface in $(M^3, {}^3g, N)$ if and only if $N \equiv const$ on Σ , i.e. iff Σ is a level set of N.

Proof uses that the relevant curves are critical points of

$$L(\mu) := \int\limits_a^b \left[|\dot{\mu}(au)| + \sigma(V \circ x(au) - V_0)
ight] d au$$

where V is any function on a neighborhood of Σ with $dV \neq 0$ and $V \equiv V_0$ on Σ and σ is a Lagrange multiplier.

Uniqueness of *N* in Geometrostatics

Theorem (C.)

The equipotential surfaces (and the Lorentzian metric) of a static gravitational system are in fact independent of the lapse function N. In other words, if $(\mathbb{R} \times M^3, {}^4g)$ is a static solution of Einstein's equation (in vacuum), then it is uniquely characterized by its induced 3-metric 3g .

Proof: The constraint equations reduce to ${}^3{\rm R}=0$ in our case $(K\equiv 0)$, so the claim for 4g follows Choquet-Bruhat's famous theorem on the IVP for the Einstein equations. Equipotential surfaces only depend on 4g .

Theorem (C.)

Let $({}^3g,N)$ and $({}^3g,\tilde{N})$ solve the static metric equations with $N,\tilde{N}\to 1$ as $r\to \infty$ and suppose that 3g is asymptotically flat but not entirely flat. Then $N\equiv \tilde{N}$.

Proof: (vacuum part here, to combine with elliptic theory)

- Levels of N, \tilde{N} are each the only equipotential surfaces $\Rightarrow \tilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.
- $0={}^3\triangle \tilde{N}={}^3\triangle (f\circ N)=f''\circ N\,\|{}^3\mathrm{grad}N\|_{{}^3g}^2+f'\circ N\,\underbrace{{}^3\triangle N}_{=0}$ so that f''=0 and thus $\tilde{N}=\alpha N+\beta$ with $\alpha,\beta\in\mathbb{R}.$
- ${}^3\nabla^2 \tilde{N} = \tilde{N}\, {}^3\mathrm{Ric} = (\alpha N + \beta)\, {}^3\mathrm{Ric} = \alpha\, {}^3\nabla^2 N + \beta\, {}^3\mathrm{Ric} = {}^3\nabla^2 \tilde{N} + \beta\, {}^3\mathrm{Ric}$ and ${}^3\mathrm{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \tilde{N} \to 1$ as $r \to \infty$, $\alpha = 1$ so $N \equiv \tilde{N}$.

Theorem (C.)

Let $({}^3g,N)$ and $({}^3g,\tilde{N})$ solve the static metric equations with $N,\tilde{N}\to 1$ as $r\to \infty$ and suppose that 3g is asymptotically flat but not entirely flat. Then $N\equiv \tilde{N}$.

Proof: (vacuum part here, to combine with elliptic theory)

- Levels of N, \tilde{N} are each the only equipotential surfaces $\Rightarrow \tilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.
- $0 = {}^3\triangle \tilde{N} = {}^3\triangle (f\circ N) = f''\circ N \parallel^3 \mathrm{grad} N \parallel_{3_g}^2 + f'\circ N \underbrace{}^3\triangle N = 0$ that f'' = 0 and thus $\tilde{N} = \alpha N + \beta$ with $\alpha, \beta \in \mathbb{R}$.
- ${}^3\nabla^2 \tilde{N} = \tilde{N}\, {}^3\mathrm{Ric} = (\alpha N + \beta)\, {}^3\mathrm{Ric} = \alpha\, {}^3\nabla^2 N + \beta\, {}^3\mathrm{Ric} = {}^3\nabla^2 \tilde{N} + \beta\, {}^3\mathrm{Ric}$ and ${}^3\mathrm{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \tilde{N} \to 1$ as $r \to \infty$, $\alpha = 1$ so $N \equiv \tilde{N}$.

Theorem (C.)

Let $({}^{3}g, N)$ and $({}^{3}g, \tilde{N})$ solve the static metric equations with $N, \tilde{N} \to 1$ as $r \to \infty$ and suppose that 3g is asymptotically flat but not entirely flat. Then $N \equiv \tilde{N}$.

Proof: (vacuum part here, to combine with elliptic theory)

- Levels of N, \tilde{N} are each the only equipotential surfaces $\Rightarrow \tilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.
- $0 = {}^{3}\triangle \tilde{N} = {}^{3}\triangle (f \circ N) = f'' \circ N \parallel^{3} \operatorname{grad} N \parallel_{3_{g}}^{2} + f' \circ N \stackrel{3}{\longrightarrow} N \operatorname{so}$

that f'' = 0 and thus $\tilde{N} = \alpha N + \beta$ with $\alpha, \beta \in \mathbb{R}$.

- ${}^{3}\nabla^{2}\tilde{N} = \tilde{N}^{3}\text{Ric} = (\alpha N + \beta)^{3}\text{Ric} = \alpha^{3}\nabla^{2}N + \beta^{3}\text{Ric} =$ ${}^{3}\nabla^{2}\tilde{N} + \beta^{3}\text{Ric}$ and ${}^{3}\text{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \tilde{N} \to 1$ as $r \to \infty$, $\alpha = 1$ so $N \equiv \tilde{N}$.

Theorem (C.)

Let $({}^3g,N)$ and $({}^3g,\tilde{N})$ solve the static metric equations with $N,\tilde{N}\to 1$ as $r\to \infty$ and suppose that 3g is asymptotically flat but not entirely flat. Then $N\equiv \tilde{N}$.

Proof: (vacuum part here, to combine with elliptic theory)

- Levels of N, \tilde{N} are each the only equipotential surfaces $\Rightarrow \tilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.
- $0 = {}^3\triangle \tilde{N} = {}^3\triangle (f\circ N) = f''\circ N \parallel^3 \mathrm{grad} N \parallel^2_{3g} + f'\circ N \underbrace{}^3\triangle N = 0$

that f''=0 and thus $\tilde{N}=\alpha N+\beta$ with $\alpha,\beta\in\mathbb{R}$.

- ${}^3\nabla^2 \tilde{N} = \tilde{N}\, {}^3\mathrm{Ric} = (\alpha N + \beta)\, {}^3\mathrm{Ric} = \alpha\, {}^3\nabla^2 N + \beta\, {}^3\mathrm{Ric} = {}^3\nabla^2 \tilde{N} + \beta\, {}^3\mathrm{Ric}$ and ${}^3\mathrm{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \tilde{N} \to 1$ as $r \to \infty$, $\alpha = 1$ so $N \equiv \tilde{N}$.

Conclusion

- The lapse function N of a geometrostatic system is unique.
- Its level sets behave like equipotential surfaces in Newtonian Gravity.
- N can be used to define force on test particles.

Thank you for your attention!

