Quasinormal modes from a naked singularity

Cecilia B. M. H. Chirenti

Centro de Matemática, Computação e Cognição Universidade Federal do ABC

AE100PRG, Prague, June 29th 2012.

Work done in collaboration with Jozef Skakala (UFABC) and Alberto Saa (UNICAMP), based on arXiv:1206.0037v1

Cecilia Chirenti

Naked singularity

Plan of the talk

Naked singularity

Naked singularity

Naked Reissner-Nordström singularity

Scalar perturbations

Time evolution for a scalar field in the RN naked singularity

Scattering potential

Features of the potential

Numerical results

Numerical setup

Conclusions

Naked Reissner-Nordström singularity

- Naked singularities and cosmic censorship conjecture
- Reissner-Nordström (RN) metric:

$$dS^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2} \quad \text{with} \quad f(r) = 1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}$$

Cauchy and event horizons r±:

$$f(r) = 0$$
 \Rightarrow $r_{\pm} = m \pm \sqrt{m^2 - q^2}$ for $q^2 < m^2$

- Extremal Reissner-Nordström black hole: for $q^2 = m^2$, $r_- = r_+ = m$.
- ► For $q^2 > m^2$, there are no horizons \Rightarrow naked Reissner-Nordström singularity

Klein-Gordon equation for the scalar field

From the Klein-Gordon equation

$$rac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}g^{\mu
u}\partial_{
u}\Psi)=0$$

with the decomposition in spherical harmonics

$$\Psi(t,r,\theta,\phi) = \sum_{\ell,m} \psi_{\ell}(t,r) Y_{\ell m}(\theta,\phi).$$

we obtain

Naked singularity

$$\frac{d^2\psi_{\ell}(t,r)}{dt^2} = \frac{f(r)}{r^2}\frac{d}{dr}\left[r^2f(r)\frac{d\psi_{\ell}(t,r)}{dr}\right] - \frac{\ell(\ell+1)f(r)}{r^2}\psi_{\ell}(t,r).$$

We want to solve the initial value problem with compactly supported initial data.

Necessary conditions at the center

If we Laplace transform the last equation, the solution $\psi_\ell(t,r)$ is given by the inverse Laplace transform of $\tilde{\psi}_\ell(s,r)$, given as

$$ilde{\psi}_{\ell}(s,r) = \int_0^{\infty} dr' \ G_{\ell}(s,r,r') I_{\ell}(s,r').$$

where $G_{\ell}(s,r,r')$ is the Green's function and $I_{\ell}(s,r')$ is the initial data term.

The Green's function is constructed from the two linearly independent solutions $U_{\ell 1,2}(s,r)$ of the homogeneous equation:

$$-\frac{f(r)}{r^2}\frac{d}{dr}\left[r^2f(r)\frac{dU_{\ell_{1,2}}(s,r)}{dr}\right] + \left[s^2 + \frac{\ell(\ell+1)f(r)}{r^2}\right]U_{\ell_{1,2}}(s,r) = 0.$$

But for $r \to 0$, $U_{\ell 1,2}(s,r) = \exp(\beta_{1,2} \cdot r)$, with $\beta_{1,2} \in \mathbb{R}$.

Both solutions are regular \Rightarrow no uniquely defined Green's function

We need one more condition at r = 0: $\psi_{\ell}(t, 0) = 0$ (physical condition: "nothing falls in or out of the singularity")

Cecilia Chirenti UFABC

From a RN black hole to a naked RN singularity

Defining

$$\phi_{\ell}(t,r) = \psi_{\ell}(t,r) \cdot r$$

and using the tortoise coordinate x

$$\frac{dr}{dx}=f(r),$$

we rewrite the wave eq. as

$$\partial_t^2 \phi_\ell - \partial_x^2 \phi_\ell = V(m, q, \ell, x) \phi_\ell$$

where the potential is

$$V(m,q,\ell,x) = \left[\frac{\ell(\ell+1)}{r^2(x)} + \frac{2m}{r^3(x)} - \frac{\frac{0.2}{2q^2}}{r^4(x)} \right]$$

$$\left[\frac{\ell(\ell+1)}{r^2(x)}+\frac{2m}{r^3(x)}\right]$$

$$\frac{n}{x} - \frac{5 \left[\frac{1}{0.2} \right]}{2 \left[\frac{q^2}{r^4(x)} \right] \times f(r(x))}.$$

Fixed mass m, increasing charge q, $\ell=2$ For $q^2/m^2 \ge 9/8$ there is no secondary peak!

Cecilia Chirenti

ℓ dependence of the potential (low ℓ)

Large ℓ limit - the particle picture

The effective potential is

$$V(r)=\frac{\ell^2}{r^2}f(r).$$

and its extremes are given by

$$r_{1,2} = \frac{3m \pm m\sqrt{9 - 8\frac{q^2}{m^2}}}{2},$$

so there is one maximum and one minimum for

lowest energy modes depend only on the small peak: continuity of the modes from BH to NS

$$\frac{q^2}{m^2} < \frac{9}{8} \Rightarrow \begin{array}{c} \text{infinite barrier} \\ + \text{small peak} \end{array} \Rightarrow 2 \text{ effective regimes} \Rightarrow$$

and there are no extrema for

$$\frac{q^2}{m^2} > \frac{9}{8} \Rightarrow \text{infinite barrier} \Rightarrow \text{no low damped modes}$$

Numerical setup

using light-cone variables u = t - x and v = t + x, the wave equation is

$$\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} = -4 \frac{\partial^2 \phi}{\partial u \partial v} = V \phi \,,$$

with the boundary conditions in the grid

$$\phi(r = 0, t) = \phi(u, v = u + 2x_0) = 0,$$

$$\phi(u = 0, v) = e^{-\frac{(v - v_c)^2}{2\sigma^2}},$$

and the algorithm

$$\phi_{N} = \phi_{W} + \phi_{E} - \phi_{S} - \frac{\phi_{W} + \phi_{E}}{8} V \Delta_{v} \Delta_{u},$$

Conditions at the center

$$\psi(t,0)=0\Rightarrow\phi(t,0)=0$$
 and $\phi'(t,0)=0$ guaranteed by the numerical boundary conditions

From a RN black hole to a naked RN singularity: discontinuity in the QNMs for low ℓ

Cecilia Chirenti

ℓ dependence of the QNMs (low ℓ)

1.4

- the evolution of the scalar field on the naked RN singularity is non-unique unless an additional boundary condition is specified at the singularity
- ▶ 4 qualitatively different cases for the low damped modes: low or large ℓ , and q^2/m^2 less or greater than $\sim 9/8$
- ▶ in the large ℓ limit
 - $(q^2/m^2 \lesssim 9/8)$ there is a continuous transition from BH to NS
 - $ightharpoonup (q^2/m^2 \gtrsim 9/8)$ the low damped modes do not exist in the NS
- lackbox for low values of ℓ : the modes face a discontinuous transition from BH to NS
 - ho $(q^2/m^2 \lesssim 9/8) |\omega_I|$ decreases with ℓ
 - $(q^2/m^2 \gtrsim 9/8) |\omega_I|$ increases with ℓ , matching the behaviour for large ℓ

Cecilia Chirenti