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Naked singularity
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Naked Reissner-Nordstrém singularity

Naked Reissner-Nordstrom singularity

» Naked singularities and cosmic censorship conjecture

» Reissner-Nordstrom (RN) metric:

2 2 —1 42 2 142 . 2m  ¢?
dS® = —f(r)dt” + f(r)”"dr" +r°dQ" with f(r):l—T—&—r—2
» Cauchy and event horizons ry:
fr)=0 = rn=m+ym—q for ¢®><m’
» Extremal Reissner-Nordstrom black hole: for > = m®, r_ =r, = m.

> For g > m?, there are no horizons = naked Reissner-Nordstrom
singularity
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Time evolution for a scalar field in the RN naked singularity

Klein-Gordon equation for the scalar field

From the Klein-Gordon equation

1
—0.(vV/=gg" ., W) =0

with the decomposition in spherical harmonics

\U(ta r, 07 ¢) = Zw@(n I’) Y(’.m(97 d))
L,m
we obtain

d?y (t,r) _f(r) d die(t, r) 26+ l)f(r)
Toen) 1D 2 e 2l -

Ye(t, r).

We want to solve the initial value problem with compactly supported initial
data.
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Scalar perturbations
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Time evolution for a scalar field in the RN naked singularity

Necessary conditions at the center

If we Laplace transform the last equation, the solution (¢, r) is given by the
inverse Laplace transform of (s, r), given as

De(s,r) = /ooo dr' Gu(s, r, r'Yu(s, r').

where Gy(s,r,r') is the Green's function and Ig(s, r') is the initial data term.

The Green's function is constructed from the two linearly independent solutions
Ue,2(s, r) of the homogeneous equation:

But for r — 0, Up1,2(s,r) = exp(B1,2 - r), with B12 € R.
Both solutions are regular = no uniquely defined Green’s function

We need one more condition at r = 0: )(t,0) =0
(physical condition: “nothing falls in or out of the singularity”) UFABC
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Features of the potential

From a RN black hole to a naked RN singularity

Fixed mass m, increasing charge q, ¢ = 2

Defining For g*/m® 2 9/8 there is no secondary peak!

@Z(tvr) :W(ta’) o r

and using the tortoise

coordinate x
dr
dx

we rewrite the wave eq. as

f(r),

V()

Re—03¢0 = V(m, q, L, x)

where the potential is

Vim0 = | T+ 50—

)} xf(r(x)). | |
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Scattering potential
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Features of the potential

¢ dependence of the potential (low ¢)
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Features of the potential

Large ¢ limit - the particle picture

The effective potential is 500 —————
qzlm2 <9/8 —
72 q°/m*>9/8
400 |
V(r)= r—zf(r).
. . ~ 300
and its extremes are given by =
> 200 t
3m+m/9 -89
rnp = 9 , 100
so there is one maximum and one minimum 0 02 04 06 08 1 12 14
for r
lowest energy modes depend
LZ < 9 N infinite barrier - 9 offective regimes = only on the small peak:
m2 8 + small peak J continuity of the modes

from BH to NS
and there are no extrema for

2 &

q—z > 3 = infinite barrier = no low damped modes
m
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Numerical results
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Numerical setup

Numerical setup

using light-cone variables u = t — x and
v = t + x, the wave equation is

82(]3 a2¢ 82¢ x x x x r=0/,¢'/ o)
CO_9_ 4 =V
otz ox? duov ~ V9 R
with the boundary conditions in the grid . ) .
¢(f = 07 t) = ¢(U, v=u+ 2X0) = 07 x x c o o o o
_ (v—vc)2
¢(U = 0, V) =é€ 252 y ug + hx /./W oN o o o o
and the algorithm U Sk

Vo Vo+h vo+2h .

¢N=¢W+¢E—¢s—wVAvAu,
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Numerical results
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Numerical setup

Conditions at the center

¥(t,0) =0 = ¢(t,0) =0 and ¢'(t,0) =0
guaranteed by the numerical boundary conditions
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Numerical results
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Numerical setup

From a RN black hole to a naked RN singularity:
discontinuity in the QNMs for low /¢
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Numerical results
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Conclusions

Conclusions

» the evolution of the scalar field on the naked RN singularity is non-unique
unless an additional boundary condition is specified at the singularity

» 4 qualitatively different cases for the low damped modes:
low or large £, and g*/m? less or greater than ~ 9/8

» in the large £ limit

» (q?/m? < 9/8) there is a continuous transition from BH to NS
» (g?/m? = 9/8) the low damped modes do not exist in the NS

» for low values of £: the modes face a discontinuous transition from BH to
NS

» (g?/m? < 9/8) |w;| decreases with ¢
» (q?/m? > 9/8) |w| increases with ¢, matching the behaviour
for large ¢
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