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Black hole uniqueness: the Kerr-Newman family

• Stationary electrovac black hole solutions belong to the
3-parameter (M, a,Q) Kerr-Newman solution

• M,Q and a show up as constants of integration of Einstein’s
equations, found to be the mass, charge and angular momentum
per unit mass.

• These spacetimes have a curvature singularity at ( BL
coordinates)

r2 + a2 cos2 θ = 0

if a = 0, 0 < r <∞, if a 6= 0,−∞ < r <∞
• There are horizon/s covering the singularity at r given by

r2 − 2Mr + a2 + Q2 = 0

For positive M there are three possibilities:

(i) two roots: 0 < ri < ro, two horizons,Sub-extreme Black Hole
(ii) a double root, single horizon, Extreme Black Hole
(iii) no roots, no horizon, super-extreme case, Naked Singularity
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Naked singularities in the KN family and WCC

Left: CP diagram for the super-extreme

(Q2 > M2) Reissner-Nordström (a = 0)

spacetimes ( also for the Schwarzschild

naked singularity (M < 0)): These

spacetimes admit a partial Cauchy

surface S (intersected by every causal

curve at most once).

Right: a2 > M2 Kerr (KNS): it is time

orientable V = (r2 + a2) ∂
∂t + a ∂

∂φ
. Any

two points can be connected by a future

directed timelike curve!! In particular,

there are CTCs through any point, there

are no partial Cauchy surfaces.

WEAK COSMIC CENSORSHIP: Naked singularities do not arise
in the collapse of “normal” matter
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BH in the KN family: analytic extensions and SCC

.

Block II absent in extreme BHs
Block III is beyond the CH for data on surface like S (this extension is non-unique)

STRONG COSMIC CENSORSHIP: For generic initial data in an
appropriate class, the domain of development is inextensible.
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Strong CC: Cauchy Horizon instability

• Initial data surface (in blue)
has a CH (in orange), at BH
inner horizon.

• Uniqueness is lost for
evolution beyond CH.

• Signals sent by radio station
(red wordline) in an infinite
interval of proper time reach
observer (grey wordline) in an
finite interval of its proper time.

• Divergency of energy of
perturbations near the CH
suggests that CH is unstable,
probably a boundary for a
perturbed spacetime near
RN/Kerr
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Stability issues

Efforts to prove the stability of interesting stationary solutions in
the KN family:

BLACK HOLE EXTERIORS

should be accompanied with similar efforts to find out whether
the “undesirable” related stationary solutions:

BH INNER STATIONARY REGIONS BEYOND CAUCHY HORIZONS,
NAKED SINGULARITIES

are ruled out by stability arguments
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The issue of non global hyperbolicity I:
Spherically symmetric case: evolution from a Partial Cauchy Surface

The CP diagram of a spherical naked singularity looks like that of region III of
the (sub-extreme or extreme) RN BH, with the two copies of the inner horizon
replaced with I±. The blue line represents a PCS, where initial data can be
given, leading to a unique evolution only in its domain of dependence 7 / 14



• Gravitational perturbations admit a harmonic and parity
decomposition. Odd and even (`,m) perturbations obey a 1+1
wave equation (Regge, Wheeler, Zerilly, Moncrief,Vishveshwara,
Gerlach, Sengupta, ...Kodama, Ishibashi...)

[∂2
t − ∂2

x + V(x)]Φ =: [∂2
t + H]Φ = 0, −∞ < t <∞, x > 0 (1)

x is a “tourtoise" radial coordinate: x : 0→∞ as r : 0→∞.

• Equation (1) could be solved by separation of variables:

Φ = exp(±
√
−Et)Ψ(x), HΨ = EΨ (2)

if H admitted a complete set of eigenfunctions in the domain
x > 0. Note that existence of modes with E < 0 implies instability.

• V is singular at x = 0. Two linearly independent local solutions of
HΨ = EΨ near x = 0 (say Ψ1,Ψ2). general local solution:

Ψ = A cos(γ)Ψ1 + A sin(γ)Ψ2

is parameterized by γ ∈ S2/Z2 (set of b.c. at singularity.)

• A choice of γ fixes a set Sγ of functions where H in (1) is
self-adjoint. Then (1) can be solved by linear superposition of
modes (2), where Ψ ∈ Sγ 8 / 14



• This gives a unique evolution for the initial data on a PCS. Thus,
ambiguity in evolution reduces to choice of γ (Gibbons, Hartnoll,
Ishibashi, PTP 113 (2005) 963

• For gravitational perturbations of spherically symmetric naked
singularities (negative mass Schwarzschild, Q2 > M2

Reissner-Nordström ), there is a unique choice of γ consistent
with the linear perturbation scheme, i.e., allowing spatially
uniformly small perturbations at t = 0. For example, for the
Schwarzschild NS, if ε is the amplitude of the perturbation, one
gets:

RabcdRabcd =
48M2

r6 + ε
(
sin(γ)

[
∼ r−7 + ...

]
+ cos(γ)

[
∼ r−3 + ...

])
which forces the choice γ = 0 (∼ π) (can prove that this choice
fixes all scalar invariants)

• After having made a choice of γ, evolution of perturbations from
a PCS, initially supported away the singularity, is unique

• Under the only consistent choice of γ, spherical NS are found to
be ( spectrum of self-adjoint H in Zerilli (even modes) equation
contains exactly one negative energy (ie, unstable) eigenstate!)
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Linear instability of the RN naked singularity and of
RN BH inner static region beyond CH

Given generic initial data on a PCS for the linear perturbation problem for the
Einstein-Maxwell equations, compactly supported away from the singularity,
the (`,m) even mode will evolve as exp(kt) for large t, with

k =
(`+ 2)!

2(`− 2)!(
√

9M2 + 4Q2(`− 1)(`− 2)− 3M)

Signature of the instability (example); (`,m) correction to Kretschman
invariant (here βj = 3m + (−1)j

√
9M2 + 4Q2(`− 1)(`− 2))

RabcdRabcd =
48(Mr − Q2)2

r8 −ε
[

24Mβ2 `(`+ 1) (Mr − Q2)

2β1r7

]
Y`m(θ, φ) ek(t−x)

Ref: G.D., R.J.Gleiser, Class.Quant.Grav., 27 185007 (2010), gr-qc 1001.0152

(see G.D., R.J.Gleiser, Class.Quant.Grav., 26 215002 (2009) for the Schwarzschild NS)
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The issue of non global hyperbolicity II:
axially symmetric case, CTCs in Kerr spacetimes

• Kerr naked singularity and block III of a Kerr black hole have closed
timelike curves through any point! This implies that there is no PCS.

• No notion of free data given on a spacelike surface, data has to be
self-consistent.

Toy model without CTCs: scalar wave eqn �Φ = 0 on 1 + 1 Minkowski
space ds2 = −dt2 + dx2 admit left and right traveling wave solutions

Φ(t, x) = f (t − x) + g(t + x)

where f and g are arbitrary 1-variable functions obtained from the initial data
on Cauchy surface t = 0:

{Φ(t = 0, x) = f (−x) + g(x), Φ̇(t = 0, x) = f ′(−x) + g′(x)}

Toy model with CTCs: 1 + 1 Minkowski space ds2 = −dt2 + dx2 with periodic
t, t ∼ t + τ . Still have traveling wave solutions but f and g have to be periodic
in its -only- argument, with period τ . This means that the data
{Φ(t = 0, x), Φ̇(t = 0, x)} are not two arbitrary functions, both must be
periodic functions of x with period τ !
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Linear instability of the Kerr naked singularity and of
Kerr BH inner stationary region beyond CH (KIII)

• Massless scalar fields, Weyl spinors, Maxwell fields and linear gravity
fields on Kerr Naked Singularities (KNS) and block III of Kerr BHs (KIII)
can all be treated using Teukolsky master equation: (∆ = r2 − 2Mr + a2)

Ts[Ψs] :=

[
(r2 + a2)2

∆
− a2 sin2

θ

]
∂2Ψs

∂t2
+

4Mar

∆

∂2Ψs

∂t∂φ
+

[
a2

∆
−

1

sin2 θ

]
∂2Ψs

∂φ2

−∆
−s ∂

∂r

(
∆

s+1 ∂Ψs

∂r

)
−

1

sin θ

∂

∂θ

(
sin θ

∂Ψs

∂θ

)
− 2s

[ a(r − M)

∆
+

i cos θ

sin2 θ

]
∂Ψs

∂φ

− 2s

[
M(r2 − a2)

∆
− r − ia cos θ

]
∂Ψs

∂t
+ (s2 cot2 θ − s)Ψs = 0.

where Ψs is a spin-weight s null tetrad component of the relevant field
(Weyl tensor in the case of gravity, for which s = ±2)

• A solution of Teukolsky equation can be used as a seed (potential) to
generate a solution of the corresponding linear field equation on Kerr
(Cohen & Kegeles PL 54A (1975) 5, Wald, Phys.Rev.Let 41 (1978),
203, e.g, a metric perturbation satisfying the linearized vacuum Einstein
equations from an s = ±2 weight solution of Teukolsky equation.
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• We proved that there are axially symmetric solutions of the
Teukolsky equations for any s, that decay exponentially along
radial directions, and that grow as ∝ exp(kt), k > 0.

• These can be used as seeds to construct Maxwell, scalar, spinor
and linear gravitational fields that decay along spatial directions
and grow exponentially with t.

• KIII and KNS are time orientable, since the field

V = (r2 + a2)
∂

∂t
+ a

∂

∂φ

is always timelike. The unstable axially symmetric solutions of
the Teukolsky equation grow boundless along the integral lines
of V (which is a congruence of timelike -accelerated- curves)

Numerical evidence: G.D., Gleiser and Pullin, Phys.Lett.B 644 (2007) 289
Proof grav. pert.: G.D, Gleiser, Ranea-Sandoval and Vucetich, C.Q.G 25
(2008) 245012
Otherl linear fields: G.Di, Gleiser, Ranea-Sandoval, C.Q.G 29(2012) 095017
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Conclusions

• The static region beyond the Cauchy horizon of a
Reissner-Nordström BH is linearly unstable.
Reissner-Nordström and Schwarzschild naked singularities are
also linearly unstable. In any of theses spaces, the evolution of
data for linear gravity that is compactly supported on a PCS will
grow exponentially in time.

• The stationary region beyond the Cauchy horizon of a Kerr BH is
linearly unstable. The Kerr naked singularity is also linearly
unstable: in these spaces there exist scalar, spinor, Maxwell and
linear gravity fields satisfying:

• fast decay along spatial directions,
• exponential growth exp(kt/a), k > 0

• Existence of these instabilities supports both forms of cosmic
censor conjectures.
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