Loop Quantum Gravity in terms of spinors and harmonic oscillators

Maïté Dupuis

June, 25th 2012

1 Loop Quantum Gravity: main ideas

2 Loop Quantum Gravity on a given graph

3 Loop Quantum Gravity and Harmonic Oscillators

A canonical quantization of General Relativity à la Dirac

- 3+1 space-time splitting
- Dirac's procedure:
 - Representation of the phase space variables as operators in $\mathcal{H}_{\rm kin}: \{.,.\} \to -i/\hbar[.,.];$
 - Constraints $\mathcal{C} \to \hat{\mathcal{C}} \in \mathcal{H}_{kin}$:
 - $|\psi\rangle/\hat{\mathcal{C}}|\psi\rangle = 0 \rightarrow \mathcal{H}_{\rm phys} + \text{inner}$ product.

 \rightarrow "simple expression" for Gauss constraint G.

Loop Quantum Gravity kinematical space

• Holonomy-flux algebra: $g_e = \mathcal{P} \exp \int_e A \in SU(2),$

$$g_e = \mathcal{P} \exp \int_e A \in SU(2),$$

 $X_e = \int_{e^*} (gE)^a N_a d^2 S \in \mathfrak{su}(2).$

Loop Quantum Gravity: kinematical Hilbert space $\mathcal{H}_{\mathrm{LQG}}$

 \mathcal{H}_{kin} = "collection of certain Hilbert spaces associated to all possible graphs".

Technical reasons \rightarrow truncature of the full continuum theory to a finite-dimensional Hilbert space

$$\mathcal{H}_{\Gamma} = L^2(\mathrm{SU}(2)^E, d^E g) \subset \mathcal{H}_{\mathrm{kin}}$$

What are the classical degrees of freedom represented by the spinnetwork functions in \mathcal{H}_{Γ} ?

 \rightarrow Spinorial formalism + applications (Spinfoams, Quantum Groups)

The classical phase space in terms of spinors

On a link e

$$\mathrm{SU}(2) \times \mathfrak{su}(2) \simeq T^*\mathrm{SU}(2) \simeq (\mathbb{C}^2 \times \mathbb{C}^2) / / \mathcal{M}$$

$$(g, X) \qquad |z\rangle = \begin{pmatrix} z^0 \\ z^1 \end{pmatrix} \in \mathbb{C}^2, |\widetilde{z}\rangle \in \mathbb{C}^2,$$

$$\mathcal{M} := \langle z|z\rangle - \langle \widetilde{z}|\widetilde{z}\rangle = 0$$

$$\downarrow^{v} \qquad \downarrow^{|z_e\rangle} \qquad \downarrow^{|z_e\rangle} \qquad \downarrow^{|z_e\rangle} \qquad \downarrow^{v}$$

$$\{X^i, X^j\} = \epsilon^{ijk} X^k \qquad \{z^A, \overline{z}^B\} = -i\delta^{AB}$$

$$\overrightarrow{X}(z) =: \frac{1}{2} \langle z|\overrightarrow{\sigma}|z\rangle$$

$$g(z, \widetilde{z}) = \frac{|z\rangle[\overline{z}| - |z|\langle \widetilde{z}|}{\sqrt{\langle z|z\rangle\langle \widetilde{z}|\widetilde{z}\rangle}}$$

$$\mathcal{M} := \langle z|z\rangle - \langle \widetilde{z}|\widetilde{z}\rangle = |\overrightarrow{X}(z)| - |\overrightarrow{X}(\widetilde{z})|$$

Geometrical interpretation: twisted geometries

• spinors $|z\rangle$, $|\tilde{z}\rangle$ + matching condition \mathcal{M}

$$\rightarrow j, N, \tilde{N}, \xi \text{ s.t. } \begin{cases} j = \frac{\langle z|z\rangle}{2}, \vec{X}(z) = jN, \vec{X}(\tilde{z}) = j\tilde{N}, \\ \xi = -2(\arg z^{1} - \arg \tilde{z}^{1}) \end{cases}$$

• On a given graph $\Gamma: \times_e T^* \mathrm{SU}(2) / / \mathrm{SU}(2)^V \to \mathsf{gauge}$ invariance at each node

$$\mathcal{C} := \sum_{e \in V} X_e = \sum_{e \in V} j_e N_e = 0 \rightarrow \text{closed twisted geometry}$$

Loop Quantum Gravity/Regge Calculus

Spinor (twistor) space $\mathbb{C}^2 \times \mathbb{C}^2$

 \downarrow area matching reduction $\mathcal{M}=0$

Twisted geometries (j, N, \tilde{N}, ξ)

 \downarrow closure reduction C = 0

Closed twisted geometries \rightarrow Loop Gravity on a fixed graph

 \downarrow shape matching reduction

Regge phase space \rightarrow Regge Calculus (discrete gravity).

Tensor operators and a $\mathrm{U}(\emph{N})$ framework

On a given vertex, quantization scheme

$$\begin{array}{c} z_e^0 \rightarrow a_e, \ \overline{z}_e^0 \rightarrow a_e^\dagger, & \text{Tensor operators} \\ z_e^1 \rightarrow b_e, \ \overline{z}_e^0 \rightarrow b_e^\dagger, & \\ [a_e, a_e^\dagger] = 1 = [b_e, b_e^\dagger], \ [a_e, b_e] = 0. & T_e^{1/2} = \begin{pmatrix} a_e^\dagger \\ b_e^\dagger \end{pmatrix}, \ \widetilde{T}_e^{1/2} = \begin{pmatrix} b_e \\ -a_e \end{pmatrix}$$

- For each leg e of the vertex, Schwinger Jordan realization of $\mathfrak{su}(2)$: $\hat{X}_e^+ = a_e^\dagger b_e$, $\hat{X}_e^- = a_e b_e^\dagger$, $\hat{X}_e^z = \frac{1}{2}(a_e^\dagger a_e b_e^\dagger b_e)$
 - Commutation relations : ok
 - $j_e = \frac{1}{2}(n_a + n_b), m_e = \frac{1}{2}(n_a n_b)$
- U(N) structure: Operators acting in the intertwiner space (= rank 0 T.O.)

$$E_{ef} = a_e^{\dagger} a_e + b_e^{\dagger} b_e, \ [E_{ef}, E_{kl}] = \delta_{fk} E_{el} - \delta_{el} E_{kf},$$
$$F_{ef} = a_e b_f - a_f b_e, \ F_{ef}^{\dagger} = a_e^{\dagger} b_f^{\dagger} - a_f^{\dagger} b_e^{\dagger}$$

The space of (N-valent) intertwiners carries an irreps of $\mathrm{U}(N)$.

Beyond the U(N) framework

- Twistors and covariant twisted geometries: extension to the Lorentz group.
- Spinfoam models: powerful tool to treat the simplicity constraints (second class) which turn BF to gravity
 - → Holomorphic spinfoam model:
 - amplitude = discrete action in terms of spinors and holonomies.
 - Correlation functions = Gaussian integrals

• Quantum Groups: $U_q(\mathfrak{su}(2)) \to \text{Cosmological constant in}$ LQG? (see talk F. Girelli on Wednesday (16.45))

Conclusions

- Description of the classical phase space of Loop Quantum Gravity in terms of spinors:
 - → the standard holonomy-flux structure derived from a simple collection of spinors on a graph (= spinor network)
- Linked to a discrete geometric picture: Twisted Geometries, and to a U(N) symmetry.
- Applications: news calculation tools,
 e.g. Correlation function using the holomorphic spinfoam amplitude = Gaussian integral.
- Generalization to the gauge group $U_q(\mathfrak{su}(2))$ thanks to tensor operator techniques.

References

- Twisted geometries: L. Freidel, S. Speziale arXiv:1001.2748, arXiv:1006.0199
- U(N) framework: F. Girelli, E. Livine arXiv: 0501075; L. Freidel, E. Livine arXiv:0911.3553, arXiv:1005.2090
- Holomorphic Spinfoam models: M.D., E. Livine arXiv: 1006.5666, arXiv: 1104.3683; M.D, L. Freidel, E. Livine, S. Speziale arXiv: 1107.5274
- Spinor representation: E. Livine, J. Tambornino arXiv: 1105.3385; Twistors E. Livine, S. Speziale, J. Tambornino arXiv: 1108.0369
- Review: M.D., S. Speziale, J. Tambornino arXiv:1201.2120
- Quantum Group: M.D., F. Girelli, work in progress (see talk F. Girelli on Wednesday (16.45)).