PROBING THE SPACETIME STRUCTURE THROUGH DYNAMICS

Abstract

We propose to review the meaning of geometrization in viewhefanalo-
gue program where the emergence of a metric appears as ajaense of
linear perturbations. We can show that the self-intergabiha field can be
geometrized together with its perturbations in the sengeldbth dynamics
are controlled by the same metric. In the attempt to disghtatine dyna-
mics from the spacetime structure, we have run into a new stmyrof the

Klein-Gordon equation that is related to redefinitions a thetric tensor
which implement a map between non-equivalent manifolds.

Brief review - effective metrics

Non-linear Scalar Field
o relativistic real scalar field in Minkowski spacetingg

S:/L(q),w)\/—_yd“x

w = yWa, o, is the kinetic term.
y=det(yy) is the determinant of the metric.

e dynamical equation

1 L dL

¢ a quasi-linear second order partial differential equatorrd
G (x,9,09) 0u0p0 + F (x,4,00) =0,
direct calculation
0" =Ly +2Lund"90"0 | (1)

determines the principal part (higher order derivativg¥) shall be asso-
ciated with the effective metric.

Geometrical Optics
Eikonal Approximation

e well defined trajectories
e describes the evolution of the characteristic surfaces
e Given the solutiorbg, we construct a family of approximative solutions

d(x) = do(x) +a f(x)e/*  ael
e disperse relation in the limit of fast oscillatioa  0)

G q)okukB:O , Ki=S (2)

Eikonal equation determines the causal structure of tharyhe

o if %P is invertible 3 g,

o defining the affine structure such thgg )y =0

0" Kyuky =0,

obs: equations (2) and (3) are conformally invariant

geodesic (3)

Wave propagation
e describes the small perturbations of a given solution

d=0do+00  with dd? < &b

7 0 +mg; 0 =0 I

oif § e are both solution =

qu) = L2(1+Pw) Y6V . B=2Luw/Lu
0

] el 1 gt
rrléff b6 = LW2(1_|_ BW) 1/2 L¢¢WW_§L¢¢+ aq) q),GJB

obs notation

Effective metrics

e are purely kinematics

¢ only for the perturbations (waves and rays)

e background behaves as a medium that defigHes ~
e background dynamics is My
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oIS it possible to geometrize the dynamics of tHe e Non-linear theory is mapped into linear theory in curved S

background scalar field?

e DO exist a unigue emergent metric for both bach-

ground® perturbation?

example linear theories in Minkowski

Emergente Metrics

Classical Quantum Gravity28, 245008 (2011)

Theorem 1.Any scalar non-linear theory described by the la
grangian L(w,¢) is equivalent to the fielep propagating in
an emergent spacetime with metﬁgv(q),éq)) and a suitable
source |$,0¢), both constructed explicitly in terms of the fielc
and Its derivatives. Furthermore, in the optical limit, thvave
vectors associated with its perturbations follow null gesds
in the samé,, ($,d¢) metric.

No explicit dependence i, i. e. L(w)

\/i_—yau(\/__y LwOv® VW) =0

Let us consider h¥ (¢, w,y) = A(yw 1 B¢,u¢,v)
As a direct conseguence

Avo,0 =A(L+BwW)YWa, , V-h=A21+Bw) /Ty

Requiring that /—h 9,0 = Y Ladup Y = A= LEW

Inotherto fixB  h¥ OV = B = = 2w
v 1+ Bw ~ Lw ( B )
h = v or hy = —
LW (VIJ B(I),IJ.(I),V) VY \/m yl.lV 1_|_ BW(I),H(I),V
In this mannerit IS equivalent!
é
(
au( L0 y“") —0 (T =0
Non-linear Linear in S ap B
in Flat ST < V*Pkaks =0 * Curved ST | kakp =0
Pk ky =0 | Ak k) = 0

e Nnon-linear theories in Minkowslkt “free” Klein-Gordon in curved ST
¢ a single emergent metric defined for background and its gErtions

«including ¢, it appears a sourcej($,d9) = 5%(1+ Bw)3/?

e L(Wd)=w+V(¢) trivialize to Minkowski

Back-reaction
e In straight analogy to GR, a singe solution is a fai b )
givends = Po+00 = Y = h’ 4 sh
[1:00 +nrdd =0

If 3p2<<dp =

o = | (1+ Bw) 2| .

e agrees withfWanalogue models linear approximations

Hydrodynamical flow and Newtonian approximation

e TheoryL(w,¢) withw >0 = barotropic flow without rotations
e potential velocity of a barotropic fluid evolves in the enargmetric

RV L v -2 v
™ = 2NCs [V“ "‘(Cs 1)VUV }

e taking the limits! — W= (1,v) |, |V|<<1

Recover known results of analogue models
fluid’s excitations

[1] E Goulart et al.Class. Quant.Grav28, 245008 (2011).
[2] F T Falciano and E Goular€lass. Quant.Grav29, 085011 (2012).

¢ What happens with linear theories?...
Is it possible to map the linear Klein-Gordon Theory in Mir
kowski ST In something else?

Metric Degeneracy and Algebraic Symmetry

Classical Quantum Gravit9, 085011 (2012)

Let a manifolda with D = 14-d with metricyyy

Y S =ava )

Defining the tensog®’ = Ay + B y*yFd,d 90

casew # 0

Its inverse is q(A)uv:%VuV A(AEBW)GH(I)OV(I)

v =) = VY {A_d/Z(AJF BW)_l/Z} ,
by choosing..../=qa) q‘(‘)’\)a\,q) = /—yWo,p = B

qtlx)av(l) — (A+ BW)VWGV(I)

(AY—A) /w

Jayw = ﬁ (yuv 1_A\§\),() - auq)avq))

casew =0

ltsinverseis  (ayw = %yw — %au(l)(?\,(l)
V=@ = VYA 2 g0 = AYVaud
by choosing... /=0 q‘a’\)a\,q) = /=yWa b =

dayw = Y — A(X) 0,90y

A=1

CI(A)(I) — V(I) = 0

e A(X) is completely arbitrary non-zero function

e actionS= [d*x,/—yy"ad,$ dy¢ is also invariant

e Metricity DFA)q?/f) =0 = D(A)HT(% =0

¢ 1 multiples metrics for the same dynamics.

Group structure
e Defining the transformatiom, [\W] = qtz)

Th () = VW + (a+ b)Yy o090 w=0
d-1_
_ b.a{y“"+ (b'a)wl 1v““v“‘30a¢05¢} w# 0

e Properties

. . . L T]_ — TA—l W# O
) ldentity 7707a = Ta0T1 = { T = Ta W O
‘. o T(BA) W# 0
i) Closure I LIN= { Toin W O
_ _ Ty l=T 1 w==£0
) Inverse Ty loTh=ThoTy 1 =T { A (A7)

iV) ASSOCiatiVity Ic o (TB O TA) = 9dco T(BA) = T(CBA) = (TC O TB) O T

e an abelian infinite parameter group

General Remarks

e Generalizations

1. complex scalar field- two non-coupled real scalar fields
2. electromagnetic fields

e [SSUES

1. What happens if we consider gravitational fields?
2. many metrical structures (infinite!) associated withghme dynamics
3. Are these metrics solutions to Einstein’s fileds equaftfon
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