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@ Weak turbulence

e transfer of energy to high frequency modes
o self-gravitating scalar field (Bizoh and Rostworowski)
e self-interacting scalar field on fixed AdS background ??

@ Localized time-periodic solutions

@ geons, boson stars and oscillatons
e Klein-Gordon fields
e Self-interacting scalar fields

G. Fodor: Scalars on AdS 2/18



Scalar field coupled to gravity

Negative cosmological constant — asymptotically AdS

P. Bizort and A. Rostworowski: Weakly Turbulent Instability of
Anti-de Sitter Spacetime, Phys. Rev. Lett. 107, 031102 (2011)
evolution of spherically symmetric massless scalar field

— energy is shifted to small wavelength high frequency modes
— weak turbulence
— black hole formation

What changes when the background is a fixed AdS spacetime?

— for a Klein-Gordon field equations are linear
— no weak turbulence

— self-interacting scalar fields ?7?
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Anti-de Sitter spacetime

T=n/2
Conformal coordinate system
1
2 4.2 2 2 2
dasc = 2 002 x ( dr* + dx© 4 sin® x dQ )
_ _All'timelike geodesics emanating from a
g £ point meet again at another point
A light ray can travel to infinity and back
in a finite time
— infinity may be like a mirror for null rays
AdS background corresponds to an
effective attractive force
T=-T1/2
x=0 X=T/2
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Self-interacting scalar field on AdS background

3 + 1 dimensional spacetime, spherical symmetry

U'(¢)

_¢,TT + ¢,xx + — k2 C032 X

sin(2x) O

the cosmological constant is A = —3k?

Example:
k=1, U(¢)=3¢6"— 30"+ §¢°
initial data: a spherically symmetric shell (finite width)
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1.2 T T T ~————

separates to an ingoing and an outgoing shell
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the shells get reflected back from infinity in finite time
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time dependence of scalar field and energy density at center
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time dependence of energy density at center
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weak turbulence ??
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O. J. C. Dias, G. T. Horowitz and J. E. Santos:
Gravitational Turbulent Instability of Anti-de Sitter Space,
arXiv:1109.1825v1 [hep-th] (2011)

— vacuum with negative cosmological constant

— use perturbation theory to show the existence of
resonant modes — turbulence

Nonlinear generalization of single perturbative mode: geon
— spatially localized periodic solutions
— not spherically symmetric

If there is a self-gravitating scalar field, there are spherically
symmetric localized periodic solutions — oscillatons
— similar to boson stars, but in that case scalar field is
complex and metric is static

Periodic localized solutions for a scalar field also exist on fixed
AdS background: breathers (oscillons)
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Breather solutions for Klein-Gordon field on AdS

Scalar potential U(¢) = $m?¢?, cosmological parameter k

There is a family of breather solutions labeled by n > 0 integer

¢n = cos[(p + 2n)7] (cos x)* P,(,1/2’”_3/2) (cos(2x))

Y L L
H=5T\Vg T g

and P (x) is the Jacobi polynomial

where

Avis, Isham and Storey, PRD 18. 3565 (1978)
All finite energy solutions can be expressed as sums of ¢,
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The number of nodes is given by n
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Solutions for m > 0 are similar, but more compact

Field equations are linear — stable configurations
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Self-interacting scalar fields

N
Periodic solutions: ¢ = _ ¢,cos(nwr)

n=0
Solve the system of ordinary differential equations by the
spectral code Kadath of Philippe Grandclément
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Small-amplitude small-k expansion

Use Schwarzschild area coordinates

dr?

2 402
1+k2r2+r dQ

ds? = —(1+ k?r?)dt? +

To leading order breathers are described by a single ordinary
differential equation

Sop+ 28, + oz = A5 £ S =0

where p = v mkr

The choice = is determined by the sign of A = 295 — 2g3
where g» and gz are defined by

_oof(1 2 92,3 934
U(¢) = m (2¢+3¢+4¢ —|—>
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The behavior of the potential near its minimum determines A

If A > 0 we call it an “attractive potential”

it is more flat than the same mass harmonic potential
— oscillation period becomes longer
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To leading order the scalar field is given by

| k
= ] S cos(mw )

where the frequency is mw, where

/ k
w = 1+w2E

In order to obtain the breather solution with a given frequency
one has to solve the equation for S with the corresponding w»

S,p+ [2)37,) +(wp—p?)S£SE =0
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IfA>0 then S,,+ /2)8,,) + (w2 —p?)S+ 8% =0

0)2=-2 R
wy=-1

©p=0 —— There are localized nodeless

0o=1 ——

2 solutions for any w» < 3
,=2.75
©,=2.99 —— . .
Attractive potential

o = N W » O O N

Higher amplitude breathers are more localized because of the
attraction represented by the scalar potential
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2
lfx<0 then S,,+ ;S,,, + (w2 —p?)S-8%=0

=32 ——

N WA a0 N

-

There are localized nodeless
solutions for any w> > 3

Repulsive potential

Higher amplitude breathers have larger size
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