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% Quantum gravity in 3d:
w A =0 :Ponzano Regge model (divergent amplitude) based irreps of su(2) or so(2,1).

w A 7 0: Turaev Viro model (finite amplitude) constructed from U, (su(2)) with q root of unity
g = etto/be

* Quantum gravity in 4d:
w A =0 :EPRL model (divergent amplitudes) based on so(4) or so(3,1).

w A\ # 0 : EPRL model (finite amplitude) constructed from U, (so(3,1)) ey
q=e¢e "p/Tc
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%k A acts as a regulator, somehow put by hand in the path integral quantization.

% If one performs the Hamiltonian analysis, /\ appears in the Hamiltonian constraint. The
kinematical Hilbert space is built from standard su(2).

Why does a quantum group structure appear at all?:
%k Some works in this direction: Perez, Pranzetti and Noui, Thiemann and Salhman.

- Can we try to better understand the notion of quantum geometry

(in the LQG context) built from a quantum group?

sk Strangely (or not), not much work done in this direction: only papers by $. Major/L. Smolin in 95.

% Hopefully we can understand better why a quantum group encodes the notion of
cosmological constant.
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Geometric (kinematic) observables: space geometry is quantized
Length (in 2d space) or Area (in 3d space) has discrete spectrum.
Cosine of angle has discrete spectrum. of talk by $. Major

Volume has discrete spectrum.

Algebra of kinematical observables generated by a U(N) algebra built from Schwinger-Jordan trick.

These operators are invariant under the adjomt

action of su(2)

Pupuis, Freidel, Girelli, Livine,...
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% Inthe LQG approach, normals are quantized. One calculates explicitly using the LQG
quantization (2+1 space time, ie 2d space):

i, — OF,  Je su(2) 7|* =17 — j(j+ 1)L,
(a) T = j®1®1, OJ=19J% 1,... J - j|]7m> =J(J+ls,m)

- - | . o
(a)J . (b)J |[/abc> = 5 (]b(]b ‘|_ 1) ‘|’]c(]c —|_ 1) T ]a(]a —|_ 1)) ’[/abc>

% We have a quantization of Al Kashi’s rule!



Hyperbolic cosine law

% In the case of hyperbolic geometry, Al Kashi’s rule 1s generalized to the hyperbolic cosine
law. (Still 2+1 spacetime now with positive A )

Radius of hyperboloid is e

— cosh é—“ 4+ cosh é—b cosh é—c

C

COSQY = UARB - UAC = . .
smhé—bsmhé—c
Alc A lb

UAB /o~ UAC V%

%k Can we recover some kind of quantization of this law using a quantum group?
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Quantum group

%k The main features of quantum group U, (SU(Q)) with g real. (Case with q root of unity is much more
involved in terms of representations.)

q7:/% — g2
qt/2 — q=1/2

« Algebra o Ji] = 2dx, |4, Jo] = [2J.], with [J.], =
w Representations are similar to classical case |j, m)
Jiljom) =\ Fmlgli £ m + 1y [jm £ 1)

. . JuoJ2 7o
[J1ma) @ [jamz) = Z ¢C My e 7, m).

J=j1—7J2l,-.J1+72
w Adjoint action on some operator f

Jev f=Jofq 7=/ — ¢ 220y Joo f =T f — £

~ Consequence, eg J, > (J,) = (¢ —¢'/?)g~7=/2J2 # 0.

and none of naive operators built from J are invariant under adjoint action.



Solution:

' ¢ root of unity: not clear yet

%k Definition (Rittenberg et al) (Which works for quasi triangular Hopf algebras)
A tensor operator t is defined from the intertwinning map

t:V — L(W,W) .
r — t(z) t(l7,m)) =t],

J.ot! = Jt) —t) J, =mt!,
J+ l>t‘77'n = Jitfﬁq_‘]zm — c_lil/Qc_z_J*Z/Qt;Z'nJjE = [ Tm][j £ m+1] t! 4
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- ¢ real: ok!

' ¢ root of unity: not clear yet

sk Definition (Rittenberg et al) (Which works for quasi triangular Hopf algebras)
A tensor operator t is defined from the intertwinning map

t:V — LW, W)
r — t(x)
Jo>t! =Tt —t) J, =mt!
Jevtl = Jutd g 72— gF V220 g = G FEmlEm 1]t

% Theorem (Wigner Eckardt)
The matrix elements (.7, M’|t? |J, M) of a tensor operator are proportional to the Clebsch-

Gordan coefficients. The constant of proportionality is a function of j and J only.

6(1j,m)) = ¢

m

% Proposition
The product of tensor operators is still a tensor operator. We have in particular

i J1 92 T L1 4ds
th,= » ,C R
may,ma
% Realization of some tensor operators
The Jordan-Schwinger trick provides a realization of spinor operators (g=1).
al - b /2 1/2 1 512 _ 1
T1/2:<bT>’ T1/2:<—a> J, =a'b o Zle me 41 Tm/le/2 =t
my,ma2

. In the quantum group case, generators J are not vector operators!
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Tensor operators and
observables

The tensor product of tensor operators is more complicated to construct in the quantum group case.

%k  Proposition (Rittenberg et al)
If t is a tensor operator then @t = Yr(t ® 1)@07_31 is another tensor operator, and ¥ = Y o R
is the permutation deformed by the /X matrix.

%k Intertwinner observables from tensor operators
From spinor operators:

1/2 1/20z 1/2 (§)1/2
By 3,0 U2 Y20 OnPORE o 14t forg—1

Recover the U(n) formalism!

From vector operators:

. . 1 1 0 . . . ——

1 1 1 1

Dgh. V! = E : qC mi my 0 (z)tml (j)tTTLQ Quantization of cosine
mims ' and area/length

. “Scalar product”

. “Vector product”

. . 1 1 1 . .
gl A Dgl) = (gl ()]
( tAJt)M_ZqC Ptk Ot

mimsa

(k)¢1 . ((z‘)tl A <j>t1>

, Building block for volume operator
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%k We can calculate explicitly the action of the scalar product on intertwinner.

OF (b)t1| glabe) =

Qzeep/% ja,
glabc

e Jb



%k We can calculate explicitly the action of the scalar product on intertwinner.

_coshi—’c’ cosh [(ja + —)g—”} + cosh [(]b + ) } cosh [( i %)ﬁ_ﬂ

(gl . (gL Jlabe) = ]

sinh [(jb + %)i—] sinh [( + %)%
q = etr/te ja,
glabc

e Jb

%k We have recovered a quantization of the hyperbolic cosine law! , z z
— cosh ~+ cosh - cosh 5=

C

cos = T
sinh E—b sinh >

C



Outlook

Main results:

Tensor operators are a key-tool to construct (kinematic) observables in loop quantum
gravity.

We are able to construct kinematical observables in the quantum group case.

To explore further:

The geometric observables built from quantum group have to be studied further (eg the
volume operator).

We have a generalization of the U(rn) formalism to the quantum group case, however it 1s
not clear yet if this is I/, (u(n))(ie a deformation of the U(n) formalism).

The hamiltonian constraint in 3d can be constructed using the U(n) formalism (Bonzom-
Livine). Hopefully, using the quantum group generalization will provide a better
understanding of why a quantum group structure appears due to the presence of the
cosmological constant.

We probably have the right framework to study twisted geometries in the presence of a
cosmological constant.



