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Quantum gravity in 4d: 

            : EPRL model (divergent amplitudes) based on so(4) or so(3,1).
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If one performs the Hamiltonian analysis,        appears in the Hamiltonian constraint. The 
kinematical Hilbert space is built from standard su(2). 
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Why does a quantum group structure appear at all?

Some works in this direction: Perez, Pranzetti and Noui, Thiemann and Salhman. 

Can we try to better understand the notion of quantum  geometry 
(in the LQG context) built from a quantum group?

Strangely (or not), not much work done in this direction: only papers by S. Major/L. Smolin in 95. 

Hopefully we can understand better why a quantum group encodes the notion of 
cosmological constant.
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Quantum geometry in LQG with
no cosmological constant

Fundamental piece of quantum space is given by intertwinner.

Geometric (kinematic) observables: space geometry is quantized
Length (in 2d space)  or Area (in 3d space) has discrete spectrum.
Cosine of angle has discrete spectrum.
Volume has discrete spectrum.
Algebra of kinematical observables generated by a U(N) algebra built from Schwinger-Jordan trick. 

Dupuis, Freidel, Girelli, Livine,...

cf talk by S. Major

invariant vector under the global action of su(2)

These operators are invariant under the adjoint 
action of su(2)

representation of su(2)
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lb

lc

!na + !nb + !nc = !0

|!ni| = l2i

!nb · !nc = lblc cos α =
1
2

(
l2b + l2c − l2a

)



Al Kashi’s rule

In the LQG approach, normals are quantized. One calculates explicitly using the LQG 
quantization (2+1 space time, ie 2d space):

!ni → (i) !J, !J ∈ su(2) |!n|2 = l2 → j(j + 1)"p

!J · !J |j,m〉 = j(j + 1)|j,m〉(a) !J ≡ !J ⊗ 1⊗ 1, (b) !J ≡ 1⊗ !J ⊗ 1, ...

(a)−→J + (b)−→J + (c)−→J = !0
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(a) !J · (b) !J |ιabc〉 =?
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(a) !J · (b) !J |ιabc〉 =
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(jb(jb + 1) + jc(jc + 1)− ja(ja + 1)) |ιabc〉

We have a quantization of Al Kashi’s rule! 

!nb · !nc =
1
2

(
l2b + l2c − l2a

)



Hyperbolic cosine law

In the case of hyperbolic geometry, Al Kashi’s rule  is generalized to the hyperbolic cosine 
law. (Still 2+1 spacetime  now with positive     )

Can we recover some kind of quantization of this law using a quantum group?

α
A

B Cla

lblc

cos α = ûAB · ûAC =
− cosh la

!c
+ cosh lb

!c
cosh lc

!c

sinh lb
!c

sinh lc
!c

Radius of hyperboloid is !c

ûAB ûAC

Λ



Quantum group

The main features of quantum group                 with q real. (Case with q root of unity is much more 
involved in terms of representations.)

 Algebra

2

Introduction

In loop quantum gravity: SU(2) -¿ cosmological constant SUq(2)???

I. Uq(su(2)) AND ITS REPRESENTATIONS (FOR q REAL)

A. Definition of Uq(su(2))

In the context of classical groups, we work with the group G and its Lie algebra Lie G. When dealing with quantum
groups, we work instead with the (deformed) algebra Fq(G) of functions over the quantum group and the enveloping
algebra Uq(Lie G).

We focus here on Uq(su(2)) the q-deformed universal enveloping algebra based on the Lie algebra su(2). It is the
associative algebra with generators 1, Jz, J+, J−. We will note the multiplication m : Uq(su(2)) ⊗ Uq(su(2)) →
Uq(su(2)). We have the relations

[Jz, J±] = ±J±, [J+, J−] = [2Jz]q, with [Jz]q =
qJz/2 − q−Jz/2

q1/2 − q−1/2
. (1)

For q → 1 the right-hand side of the second equation of (1) approaches 2Jz and we thus recover the usual Lie algebra
su(2).
Uq(su(2)) is equipped with a structure of quasitriangular Hopf algebra (∆, ε, S,R) which are defined as follows.

• The coproduct ∆ : Uq(su(2)) → Uq(su(2))⊗ Uq(su(2)):

∆Jz = Jz ⊗ 1 + 1⊗ Jz, ∆J± = J± ⊗ qJz/2 + q−Jz/2 ⊗ J±. (2)

In the limit q → 1, we recover the un-deformed case

∆Jα = Jα ⊗ 1 + 1⊗ Jα, α = +.−, z. (3)

The notion coproduct encodes physically what is the total angular momentum of a 2-particles system. Consid-
ering the un-deformed case, we have

∆Jα|j1, m1〉 ⊗ |j2, m2〉 = (Jα ⊗ 1 + 1⊗ Jα)|j1, m1〉 ⊗ |j2, m2〉 = (J (1)
α + J (2)

α )|j1, m1〉 ⊗ |j2, m2〉. (4)

In the deformed case (2), the addition of angular momenta is non-commutative, hence the addition of (q-)angular
momenta depends on the order we set our particles. As we shall see, braiding constructed using the R-matrix
will allow to relate different orderings.

• A co-unit ε:

εJz = εJ± = 0. (5)

• An antipode S : Uq(su(2)) → Uq(su(2)):

SJz = −Jz, SJ± = −q±1/2J±. (6)

• The R-matrix

R =
∑

R1 ⊗R2 = qJz⊗Jz

∞∑

n=0

(1− q−1)n

[n]q!
qn(n−1)/4(qJz/2J+)n ⊗ (q−Jz/2J−)n (7)

Standard notations are R12 =
∑

R1 ⊗R2, R21 =
∑

R2 ⊗R1, R13 =
∑

R1 ⊗ 1⊗R2, ...

All these elements satisfy the axioms of a quasi-triangular Hopf algebra [? ]. In particular we have the properties
which will be useful later on.

S(X1X2) = S(X2)S(X1), Xi ∈ Uq(su(2)) m ◦ (S ⊗ I)∆ = m ◦ (I⊗ S)∆ = 1ε, (8)
R−1 = (S ⊗ I) ◦R. R−1

21 = R−1
21 (9)

Consider now the permutation ψ : Uq(su(2))⊗Uq(su(2)) → Uq(su(2))⊗Uq(su(2)), ψ(X ⊗Y ) = Y ⊗X. The fact that
the coproduct is not co-commutative in (2) means that ∆X '= ψ∆X. We can nevertheless relate these two operators
thanks to the braiding generated by the R-matrix,

ψ∆X = R(∆X)R−1. (10)

Uq(su(2))
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

! "  ʯſ%Ͽ'ͯſ�ͯ*ÿ˿ſʯſɏ*ʯ.ͯſʯ˿

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.
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momenta depends on the order we set our particles. As we shall see, braiding constructed using the R-matrix
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which will be useful later on.

S(X1X2) = S(X2)S(X1), Xi ∈ Uq(su(2)) m ◦ (S ⊗ I)∆ = m ◦ (I⊗ S)∆ = 1ε, (8)
R−1 = (S ⊗ I) ◦R. R−1

21 = R−1
21 (9)

Consider now the permutation ψ : Uq(su(2))⊗Uq(su(2)) → Uq(su(2))⊗Uq(su(2)), ψ(X ⊗Y ) = Y ⊗X. The fact that
the coproduct is not co-commutative in (2) means that ∆X '= ψ∆X. We can nevertheless relate these two operators
thanks to the braiding generated by the R-matrix,

ψ∆X = R(∆X)R−1. (10)

Uq(su(2))

 Adjoint action on some operator f
J± ! f = J±fq−Jz/2 − q±1/2q−Jz/2fJ±, Jz ! f := Jzf − fJz.
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that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

! "  ʯſ%Ͽ'ͯſ�ͯ*ÿ˿ſʯſɏ*ʯ.ͯſʯ˿

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.
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We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
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[j ∓m]q[j ± m + 1]q |jm ± 1〉



Quantum group

The main features of quantum group                 with q real. (Case with q root of unity is much more 
involved in terms of representations.)

 Algebra

2

Introduction

In loop quantum gravity: SU(2) -¿ cosmological constant SUq(2)???

I. Uq(su(2)) AND ITS REPRESENTATIONS (FOR q REAL)

A. Definition of Uq(su(2))

In the context of classical groups, we work with the group G and its Lie algebra Lie G. When dealing with quantum
groups, we work instead with the (deformed) algebra Fq(G) of functions over the quantum group and the enveloping
algebra Uq(Lie G).

We focus here on Uq(su(2)) the q-deformed universal enveloping algebra based on the Lie algebra su(2). It is the
associative algebra with generators 1, Jz, J+, J−. We will note the multiplication m : Uq(su(2)) ⊗ Uq(su(2)) →
Uq(su(2)). We have the relations

[Jz, J±] = ±J±, [J+, J−] = [2Jz]q, with [Jz]q =
qJz/2 − q−Jz/2

q1/2 − q−1/2
. (1)

For q → 1 the right-hand side of the second equation of (1) approaches 2Jz and we thus recover the usual Lie algebra
su(2).
Uq(su(2)) is equipped with a structure of quasitriangular Hopf algebra (∆, ε, S,R) which are defined as follows.

• The coproduct ∆ : Uq(su(2)) → Uq(su(2))⊗ Uq(su(2)):

∆Jz = Jz ⊗ 1 + 1⊗ Jz, ∆J± = J± ⊗ qJz/2 + q−Jz/2 ⊗ J±. (2)

In the limit q → 1, we recover the un-deformed case

∆Jα = Jα ⊗ 1 + 1⊗ Jα, α = +.−, z. (3)

The notion coproduct encodes physically what is the total angular momentum of a 2-particles system. Consid-
ering the un-deformed case, we have

∆Jα|j1, m1〉 ⊗ |j2, m2〉 = (Jα ⊗ 1 + 1⊗ Jα)|j1, m1〉 ⊗ |j2, m2〉 = (J (1)
α + J (2)

α )|j1, m1〉 ⊗ |j2, m2〉. (4)

In the deformed case (2), the addition of angular momenta is non-commutative, hence the addition of (q-)angular
momenta depends on the order we set our particles. As we shall see, braiding constructed using the R-matrix
will allow to relate different orderings.

• A co-unit ε:

εJz = εJ± = 0. (5)

• An antipode S : Uq(su(2)) → Uq(su(2)):

SJz = −Jz, SJ± = −q±1/2J±. (6)

• The R-matrix

R =
∑

R1 ⊗R2 = qJz⊗Jz

∞∑

n=0

(1− q−1)n

[n]q!
qn(n−1)/4(qJz/2J+)n ⊗ (q−Jz/2J−)n (7)

Standard notations are R12 =
∑

R1 ⊗R2, R21 =
∑

R2 ⊗R1, R13 =
∑

R1 ⊗ 1⊗R2, ...

All these elements satisfy the axioms of a quasi-triangular Hopf algebra [? ]. In particular we have the properties
which will be useful later on.

S(X1X2) = S(X2)S(X1), Xi ∈ Uq(su(2)) m ◦ (S ⊗ I)∆ = m ◦ (I⊗ S)∆ = 1ε, (8)
R−1 = (S ⊗ I) ◦R. R−1

21 = R−1
21 (9)

Consider now the permutation ψ : Uq(su(2))⊗Uq(su(2)) → Uq(su(2))⊗Uq(su(2)), ψ(X ⊗Y ) = Y ⊗X. The fact that
the coproduct is not co-commutative in (2) means that ∆X '= ψ∆X. We can nevertheless relate these two operators
thanks to the braiding generated by the R-matrix,

ψ∆X = R(∆X)R−1. (10)

Uq(su(2))

 Adjoint action on some operator f
J± ! f = J±fq−Jz/2 − q±1/2q−Jz/2fJ±, Jz ! f := Jzf − fJz.

 Consequence, eg
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B. General discussion on representations

A representation of Uq(su(2)) in a vector space V is an algebra homomorphism ρ : Uq(su(2)) → L(V, V ), where
L(V, V ) denotes the set of linear mappings from V to V . We will use in general the short notation XV v ≡ ρ(X)v for
v ∈ V . At this time we do not discuss the specifics of the representation theory of Uq(su(2)) and have instead a very
general discussion which will be useful when discussing tensor operators.

A vector space endowed with a representation of Uq(su(2)) is called a (Uq(su(2))-)module1. Let’s consider V and
W two modules, then a homomorphism of modules is a linear map f : V →W such that ∀v ∈ V , ∀X ∈ Uq(su(2))

f(XV v) = XW f(v)↔ fXV = XW f. (11)

As we discussed above, the coproduct of Uq(su(2)) allows to equip the vector space V ⊗W with a module structure,

XV⊗W = ∆X, XV⊗W v ⊗ w ≡ ∆Xv ⊗ w, ∀v ⊗ w ∈ V ⊗W. (12)

The space of linear maps L(V,W ) can also be equipped with a module structure, thanks to the adjoint action.

" : Uq(su(2))⊗ L(V,W ) → L(V,W ) (13)

(X, f) → X " f :=
∑

X(1)W
fS(X(2))V

, (14)

where we have been using Sweedler notation. Explicitly, we have

J± " f = J±W fq−Jz/2
V − q±1/2q−Jz/2

W fJ±V , Jz " f := JzW f − fJzV . (15)

By definition, this action satisfies that

(XY ) " f = (X " (Y " f)), X " (f1f2) = m((∆X) " (f1 ⊗ f2)) =
∑

(X(1) " f)(X(2) " f). (16)

Uq(su(2)) can also be equipped with a module structure thanks again to the adjoint action.

" : Uq(su(2))⊗ Uq(su(2)) → Uq(su(2)) (17)

(X, Y ) → X " Y :=
∑

X(1)Y S(X(2)), (18)

Note that for instance J+ " (J+) = (q− q1/2)q−Jz/2J2
+ (= 0. In the limit q → 1, the adjoint action is realized with the

commutator

Jα "q→1 Jβ = [Jα, Jβ ], α, β = +,−, z, (19)

as one is used to. We emphasize that in the deformed case, the adjoint action is not realized as a commutator. Let us
add as well that when representing Uq(su(2)) on a vector space V , the representation of the adjoint action of Uq(su(2))
on itself (17) coincides obviously with the adjoint action (13).

Lemma I.1. Let C ∈ Uq(su(2)) invariant under the adjoint action. Then C commutes with the generators Jα,
α = +,−, z. Conversely, if C ∈ Uq(su(2)) commutes with Jα, α = +,−, z then it is invariant under the adjoint
action.

This lemma is useful to related quantities which are invariant under the adjoint action and the different Casimir one
can construct. This is especially relevant in the case where the commutator and the adjoint action are not coinciding.

Since ε is an algebra homomorphism, we can use it to define a representation on V .

Xεv ≡ ε(X)v, ∀v ∈ V (20)

This representation is called the trivial representation. Furthermore an element v ∈ V is said to be invariant under
Uq(su(2)) if XV v = ε(X)v.

We have then the important lemma

Lemma I.2. Let V,W be two modules. A linear mapping f ∈ L(V,W ) is invariant if and only if it is an homomor-
phism of modules.

To prove this lemma, we use the second property of (8).

1 From now on, we omit Uq(su(2)) since unless specified otherwise, we will always consider Uq(su(2))-modules.

and none of naive operators built from J are invariant under adjoint action.

 Representations are similar to classical case
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

! "  ʯſ%Ͽ'ͯſ�ͯ*ÿ˿ſʯſɏ*ʯ.ͯſʯ˿

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.
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is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
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A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property
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m = [Jz, tj

m] = mtj
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J± ! tj
m = J± tj
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1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
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m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of
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Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
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|j,m〉 =
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We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
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tj1
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(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

J±|j,m〉 =
√

[j ∓m]q[j ± m + 1]q |jm ± 1〉
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.
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We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.
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C. Representations of Uq(su(2)) for q real

We want to give further details on the representations of Uq(su(2)) when q is real. A key difference between the case
q real and q complex comes from the fact that qJz does not completely determine Jz in the complex case, whereas it
does in the real case. Furthermore, the notion Hermitian is non trivial since qJz† != qJz in the complex case.

In the real case, it has been showed that the representation theory of Uq(su(2)) is very close to the representation
theory of the undeformed Lie algebra su(2).

D. q-harmonic oscillators and the Schwinger-Jordan trick

The q-harmonic oscillators are defined in terms of the Hermitian operators a, a†, Na, b, b†, Nb, which satisfy the
following conditions

[a†, b†] = [a, b] = [a, b†] = [a†, b] = 0, (21)
aa† − q±1/2a†a = q∓Na/2, (22)
bb† − q±1/2b†b = q∓Nb/2, (23)
[Na, a†] = a†, [Na, a] = −a, (24)
[Nb, b

†] = b†, [Nb, b] = −b. (25)

Let us point out that the operator a†a (or b†b) is not the number operator but rather is equal to [Na] (or [Nb]
respectively). From (24, 25), it is easy to deduce the useful commutation relations between Na, a, a† and Nb, b, b†

respectively:

qNa/2a† = q1/2a†qNa/2, qNa/2a = q−1/2aqNa/2,

qNb/2b† = q1/2b†qNb/2, qNb/2b = q−1/2bqNb/2. (26)

And from (22, 23), we deduce that

a†a = [Na]q, aa† = [Na + 1]q,
b†b = [Nb]q, bb† = [Nb + 1]q (27)

These harmonic oscillators act on a Fock space F ∼ Fa ⊗ Fb = {
∑

cnainbj
|nai , nbj , cnainbj

∈ R〉} with vacuum
|0, 0〉 = |0〉a ⊗ |0〉b such that a|0〉a = 0 and b|0〉b = 0.

We can use this pair of harmonic oscillators to realize the generators of Uq(su(2)) [? ? ]

Jz =
1
2
(Na −Nb), J+ = a†b, J− = b†a, (28)

Using (22-25), we can recover the commutation relations (1).
We can use the Fock space of this pair q-harmonic oscillators to generate the representations of Uq(su(2)).

II. TENSOR OPERATORS FOR Uq(SU2) AND THE WIGNER-ECKART THEOREM

The general definition of tensor operators for a general Hopf algebra has been given in [? ]. We use their formalism
in the specific case of Uq(su(2)).

A. Definition and Wigner-Eckart theorem

There are two equivalent definitions of a tensor operator [? ]. Consider V and W two modules and the linear
mappings t, t̂

t : V → L(W, W )
x → t(x)

t̂ : V ⊗W → W
(x, y) → t̂(x, y) = t(x)y (29)

then we have the following proposition

5

Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

B. Product of tensor operators

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

Jz ! tj
m = Jztj

m − tj
mJz = mtj

m

J± ! tj
m = J±tj

mq−Jz/2 − q±1/2q−Jz/2tj
mJ±



Solution:
use tensor operators

Definition (Rittenberg et al) (which works for quasi triangular Hopf algebras)
A tensor operator t is defined from the intertwinning map

q real: ok!
q root of unity: not clear yet
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k
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Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.
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C. Representations of Uq(su(2)) for q real

We want to give further details on the representations of Uq(su(2)) when q is real. A key difference between the case
q real and q complex comes from the fact that qJz does not completely determine Jz in the complex case, whereas it
does in the real case. Furthermore, the notion Hermitian is non trivial since qJz† != qJz in the complex case.

In the real case, it has been showed that the representation theory of Uq(su(2)) is very close to the representation
theory of the undeformed Lie algebra su(2).

D. q-harmonic oscillators and the Schwinger-Jordan trick

The q-harmonic oscillators are defined in terms of the Hermitian operators a, a†, Na, b, b†, Nb, which satisfy the
following conditions

[a†, b†] = [a, b] = [a, b†] = [a†, b] = 0, (21)
aa† − q±1/2a†a = q∓Na/2, (22)
bb† − q±1/2b†b = q∓Nb/2, (23)
[Na, a†] = a†, [Na, a] = −a, (24)
[Nb, b

†] = b†, [Nb, b] = −b. (25)

Let us point out that the operator a†a (or b†b) is not the number operator but rather is equal to [Na] (or [Nb]
respectively). From (24, 25), it is easy to deduce the useful commutation relations between Na, a, a† and Nb, b, b†

respectively:

qNa/2a† = q1/2a†qNa/2, qNa/2a = q−1/2aqNa/2,

qNb/2b† = q1/2b†qNb/2, qNb/2b = q−1/2bqNb/2. (26)

And from (22, 23), we deduce that

a†a = [Na]q, aa† = [Na + 1]q,
b†b = [Nb]q, bb† = [Nb + 1]q (27)

These harmonic oscillators act on a Fock space F ∼ Fa ⊗ Fb = {
∑

cnainbj
|nai , nbj , cnainbj

∈ R〉} with vacuum
|0, 0〉 = |0〉a ⊗ |0〉b such that a|0〉a = 0 and b|0〉b = 0.

We can use this pair of harmonic oscillators to realize the generators of Uq(su(2)) [? ? ]

Jz =
1
2
(Na −Nb), J+ = a†b, J− = b†a, (28)

Using (22-25), we can recover the commutation relations (1).
We can use the Fock space of this pair q-harmonic oscillators to generate the representations of Uq(su(2)).

II. TENSOR OPERATORS FOR Uq(SU2) AND THE WIGNER-ECKART THEOREM

The general definition of tensor operators for a general Hopf algebra has been given in [? ]. We use their formalism
in the specific case of Uq(su(2)).

A. Definition and Wigner-Eckart theorem

There are two equivalent definitions of a tensor operator [? ]. Consider V and W two modules and the linear
mappings t, t̂

t : V → L(W, W )
x → t(x)

t̂ : V ⊗W → W
(x, y) → t̂(x, y) = t(x)y (29)

then we have the following proposition
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

B. Product of tensor operators

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

Theorem (Wigner Eckardt) 
The matrix elements                            of a tensor operator are proportional to the Clebsch-
Gordan coefficients.  The constant of proportionality is a function of j and J only.

〈J, M ′|tj
m|J, M〉

Jz ! tj
m = Jztj

m − tj
mJz = mtj

m

J± ! tj
m = J±tj

mq−Jz/2 − q±1/2q−Jz/2tj
mJ±



Solution:
use tensor operators

Definition (Rittenberg et al) (which works for quasi triangular Hopf algebras)
A tensor operator t is defined from the intertwinning map

q real: ok!
q root of unity: not clear yet
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
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A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj
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that tj
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We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2
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j1 j2 j
m1 m2 m

tj1
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tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.
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C. Representations of Uq(su(2)) for q real

We want to give further details on the representations of Uq(su(2)) when q is real. A key difference between the case
q real and q complex comes from the fact that qJz does not completely determine Jz in the complex case, whereas it
does in the real case. Furthermore, the notion Hermitian is non trivial since qJz† != qJz in the complex case.

In the real case, it has been showed that the representation theory of Uq(su(2)) is very close to the representation
theory of the undeformed Lie algebra su(2).

D. q-harmonic oscillators and the Schwinger-Jordan trick

The q-harmonic oscillators are defined in terms of the Hermitian operators a, a†, Na, b, b†, Nb, which satisfy the
following conditions

[a†, b†] = [a, b] = [a, b†] = [a†, b] = 0, (21)
aa† − q±1/2a†a = q∓Na/2, (22)
bb† − q±1/2b†b = q∓Nb/2, (23)
[Na, a†] = a†, [Na, a] = −a, (24)
[Nb, b

†] = b†, [Nb, b] = −b. (25)

Let us point out that the operator a†a (or b†b) is not the number operator but rather is equal to [Na] (or [Nb]
respectively). From (24, 25), it is easy to deduce the useful commutation relations between Na, a, a† and Nb, b, b†

respectively:

qNa/2a† = q1/2a†qNa/2, qNa/2a = q−1/2aqNa/2,

qNb/2b† = q1/2b†qNb/2, qNb/2b = q−1/2bqNb/2. (26)

And from (22, 23), we deduce that

a†a = [Na]q, aa† = [Na + 1]q,
b†b = [Nb]q, bb† = [Nb + 1]q (27)

These harmonic oscillators act on a Fock space F ∼ Fa ⊗ Fb = {
∑

cnainbj
|nai , nbj , cnainbj

∈ R〉} with vacuum
|0, 0〉 = |0〉a ⊗ |0〉b such that a|0〉a = 0 and b|0〉b = 0.

We can use this pair of harmonic oscillators to realize the generators of Uq(su(2)) [? ? ]

Jz =
1
2
(Na −Nb), J+ = a†b, J− = b†a, (28)

Using (22-25), we can recover the commutation relations (1).
We can use the Fock space of this pair q-harmonic oscillators to generate the representations of Uq(su(2)).

II. TENSOR OPERATORS FOR Uq(SU2) AND THE WIGNER-ECKART THEOREM

The general definition of tensor operators for a general Hopf algebra has been given in [? ]. We use their formalism
in the specific case of Uq(su(2)).

A. Definition and Wigner-Eckart theorem

There are two equivalent definitions of a tensor operator [? ]. Consider V and W two modules and the linear
mappings t, t̂

t : V → L(W, W )
x → t(x)

t̂ : V ⊗W → W
(x, y) → t̂(x, y) = t(x)y (29)

then we have the following proposition
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.
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We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of
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.
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Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )
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∑
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qC
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We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

Theorem (Wigner Eckardt) 
The matrix elements                            of a tensor operator are proportional to the Clebsch-
Gordan coefficients.  The constant of proportionality is a function of j and J only.

〈J, M ′|tj
m|J, M〉

Proposition
The product of tensor operators is still a tensor operator. We have in particular 
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
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Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.
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j acting on the vector space V k
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m. (30)

In this sense tj
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corresponding to the trivial representation 1 = t0
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A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

B. Product of tensor operators

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

Jz ! tj
m = Jztj

m − tj
mJz = mtj

m

J± ! tj
m = J±tj

mq−Jz/2 − q±1/2q−Jz/2tj
mJ±



Solution:
use tensor operators

Definition (Rittenberg et al) (which works for quasi triangular Hopf algebras)
A tensor operator t is defined from the intertwinning map

q real: ok!
q root of unity: not clear yet
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property
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m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

B. Product of tensor operators

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

4

C. Representations of Uq(su(2)) for q real

We want to give further details on the representations of Uq(su(2)) when q is real. A key difference between the case
q real and q complex comes from the fact that qJz does not completely determine Jz in the complex case, whereas it
does in the real case. Furthermore, the notion Hermitian is non trivial since qJz† != qJz in the complex case.

In the real case, it has been showed that the representation theory of Uq(su(2)) is very close to the representation
theory of the undeformed Lie algebra su(2).

D. q-harmonic oscillators and the Schwinger-Jordan trick

The q-harmonic oscillators are defined in terms of the Hermitian operators a, a†, Na, b, b†, Nb, which satisfy the
following conditions

[a†, b†] = [a, b] = [a, b†] = [a†, b] = 0, (21)
aa† − q±1/2a†a = q∓Na/2, (22)
bb† − q±1/2b†b = q∓Nb/2, (23)
[Na, a†] = a†, [Na, a] = −a, (24)
[Nb, b

†] = b†, [Nb, b] = −b. (25)

Let us point out that the operator a†a (or b†b) is not the number operator but rather is equal to [Na] (or [Nb]
respectively). From (24, 25), it is easy to deduce the useful commutation relations between Na, a, a† and Nb, b, b†

respectively:

qNa/2a† = q1/2a†qNa/2, qNa/2a = q−1/2aqNa/2,

qNb/2b† = q1/2b†qNb/2, qNb/2b = q−1/2bqNb/2. (26)

And from (22, 23), we deduce that

a†a = [Na]q, aa† = [Na + 1]q,
b†b = [Nb]q, bb† = [Nb + 1]q (27)

These harmonic oscillators act on a Fock space F ∼ Fa ⊗ Fb = {
∑

cnainbj
|nai , nbj , cnainbj

∈ R〉} with vacuum
|0, 0〉 = |0〉a ⊗ |0〉b such that a|0〉a = 0 and b|0〉b = 0.

We can use this pair of harmonic oscillators to realize the generators of Uq(su(2)) [? ? ]

Jz =
1
2
(Na −Nb), J+ = a†b, J− = b†a, (28)

Using (22-25), we can recover the commutation relations (1).
We can use the Fock space of this pair q-harmonic oscillators to generate the representations of Uq(su(2)).

II. TENSOR OPERATORS FOR Uq(SU2) AND THE WIGNER-ECKART THEOREM

The general definition of tensor operators for a general Hopf algebra has been given in [? ]. We use their formalism
in the specific case of Uq(su(2)).

A. Definition and Wigner-Eckart theorem

There are two equivalent definitions of a tensor operator [? ]. Consider V and W two modules and the linear
mappings t, t̂

t : V → L(W, W )
x → t(x)

t̂ : V ⊗W → W
(x, y) → t̂(x, y) = t(x)y (29)

then we have the following proposition
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

B. Product of tensor operators

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

Theorem (Wigner Eckardt) 
The matrix elements                            of a tensor operator are proportional to the Clebsch-
Gordan coefficients.  The constant of proportionality is a function of j and J only.

〈J, M ′|tj
m|J, M〉

Proposition
The product of tensor operators is still a tensor operator. We have in particular 
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Proposition II.1. The map t : V → L(W, W ) is a Uq(su(2))-module homomorphism if and only if t̂ : V ⊗W → W
is a Uq(su(2))-module homomorphism.

Definition II.2. If the equivalent statements in Proposition II.1 are satisfied then the linear mapping t is called a
tensor operator for Uq(su(2)).

Note that in the definition there is no specific assumption on the reducibility of the representation nor on its
dimension.

Representations of Uq(su(2)) are given by V j with basis vectors |j,m〉. We define then the tensor operator of rank
j acting on the vector space V k

t(|j,m〉) ≡ tj
m. (30)

In this sense tj
m is a (2k + 1) × (2k + 1) matrix. Note that the identity operator 1 is a tensor operator of rank 0,

corresponding to the trivial representation 1 = t0
0.

A key property of a tensor operator is the way it transforms. Indeed, since by definition t is a module homomorphism
this means that the operator tj

m transforms as the vector |j,m〉. On the other hand, as a linear map, we also know
that tj

m transforms under the adjoint action. Hence we have the equivariance property

Jz ! tj
m = [Jz, tj

m] = mtj
m (31)

J± ! tj
m = J± tj

m K−1 − q±
1
2 K−1 tj

m J± =
√

[j ∓m][j ±m + 1] tj
m±1 (32)

As always we can perform the limit q → 1 to recover the tensor operators for su(2).

The equivariance property has a very important consequence regarding the matrix elements of tj
m.

Theorem II.3. Wigner-Eckart theorem.
Let tj

m a tensor operator of Uq(su(2)) then the matrix elements of tj
m are proportional to the q-WCG coefficients of

Uq(su(2)), the constant of proportionality being an invariant under the adjoint action which depends only on k and j.

B. Product of tensor operators

We know that the tensor product of representations of Uq(su(2)) can be decomposed in a sum of representations of

Uq(su(2)) using the quantum Clebsh-Gordon (q-WCG) coefficients qC
j1 j2 j
m1 m2 m

.

|j1m1〉 ⊗ |j2m2〉 =
∑

j=|j1−j2|,..,j1+j2

qC
j1 j2 j
m1 m2 m

|j,m〉. (33)

Conversely, given a representation V j of Uq(su(2)) we can decompose it along two representations V j1 and V j2 of
Uq(su(2)) (with |j1 − j2| ≤ j ≤ j1 + j2 )

|j,m〉 =
∑

m1,m2

qC
j1 j2 j
m1 m2 m

|j1m1〉|j2m2〉. (34)

We can use these properties to show that the product of tensor operators is still a tensor operator.

Lemma II.4. Let t : V → L(W, W ) and t′ : V ′ → L(W, W ) be two tensor operators then

tt′ : V ⊗ V ′ → L(W, W )
(x, y) → t(x)t′(y) (35)

is still a tensor operator.

We have then the analogue of (33) and (34) in terms of tensor operators. For example, we have

tj
m =

∑

m1,m2

qC
j1 j2 j
m1 m2 m

tj1
m1

tj2
m2

(36)

We can construct in particular two interesting combinations of tensor operators which are invariant under the adjoint
action, other than the identity operator 1.

Realization of some tensor operators
The Jordan-Schwinger trick provides a realization of  spinor operators (q=1).
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A. Rank 1/2 tensor operators

Tensor operators of rank 1/2 can be realized using a certain combination of the q-boson creation operators. That
is more precisely, modified q-boson creation operators A†, B† and modified annihilation operators B̃ and Ã acting in
F can be defined:

A† ≡ a†qNa/4, B† ≡ b†q(2Na+Nb)/4,

B̃ ≡ q1/4B = q(2Na+Nb+1)/4b, Ã ≡ −q−1/4A = −q(Na−1)/4a. (66)

These operators form components of two different spin 1/2 tensor operators: T 1/2 =

(
T 1/2

+

T 1/2
−

)
and T̃ 1/2 =

(
T̃ 1/2

+

T̃ 1/2
−

)

explicitly given by:

T 1/2 =
(

A†

B†

)
, T̃ 1/2 =

(
B̃
Ã

)
(67)

T 1/2 and T̃ 1/2 are Hermitian conjugate to each other:

T̃ 1/2
m = (−1)1/2−mqm/2(T 1/2

−m)† with m = ±1/2. (68)

From the adjoint action on rank 1/2 tensor operator and the realization of the generators Jα in terms of q boson
operators (cf (28)), we check that the adjoint action of Jσ on rank 1/2 tensor operators is explicitly given by

J± ! t1/2
∓ = t1/2

± , J± ! t1/2
± = 0, Jz ! t1/2

± = ±1
2
t1/2
± , (69)

where t1/2 stands here for T 1/2 and T̃ 1/2.
When looking at the limit q → 1, we have

T 1/2 =
(

a†

b†

)
, T̃ 1/2 =

(
b
−a

)
(70)

From the operators in (67), we build using (41) the quadratic Uq(su(2)) Casimir:

T 0 =
1√
[2]

(
q1/4T 1/2

+ T̃ 1/2
− − q−1/4T 1/2

− T̃ 1/2
+

)
= − E√

[2]
(71)

where E ≡ A†A + B†B. It is then easy to check that

J± ! E = 0, Jz ! E = E. (72)

By looking at the explicit realization of the tensor operators we can explicitly check the Wigner-Eckart theorem,
and identify the normalization with this realization.

〈j1, m1|T 1/2
m |j2, m2〉 = δj1,j2+1/2

(
([dj2 ])

1/2q
j2
2

)
qC

1/2 j2 j1
m m2 m1

,

〈j1, m1|T̃ 1/2
m |j2, m2〉 = δj1,j2−1/2

(
([dj2 ])

1/2q
1
4 (2j2−1)

)
qC

1/2 j2 j1
m m2 m1

(73)

where m = ±1/2. We recover that the tensor operators T 1/2, T̃ 1/2 are proportional to a q-WCG up to a factor
depending only on the ji.

B. Rank 1 tensor operators

Rank 1 tensor operators for Uq(su(2)) have been identified in different works. Here, we construct them using the
rank 1/2 tensor operators T 1/2, T̃ 1/2 and the q-WCG coefficients by using the coupling (36).

Using the following values of the q-WCG coefficients,

qC
1
2

1
2 1

1
2

1
2 1

= 1 = qC
1
2

1
2 1

− 1
2 −

1
2 1

, qC
1
2

1
2 1

1
2 −

1
2 0

=
q−

1
4

√
[2]

, qC
1
2

1
2 1

− 1
2

1
2 0

=
q

1
4

√
[2]

, (74)

In the quantum group case, generators J are not vector operators!

J+ = a†b ∝
∑

m1,m2

C
1/2 1/2 1
m1 m2 +1 T 1/2

m1
T̃ 1/2

m2
= t1

+1

Jz ! tj
m = Jztj

m − tj
mJz = mtj

m

J± ! tj
m = J±tj

mq−Jz/2 − q±1/2q−Jz/2tj
mJ±



Tensor operators and
observables 

The tensor product of tensor operators is more complicated to construct in the quantum group case.
Proposition (Rittenberg et al)

If  t  is a tensor operator then                                        is another tensor operator, and      
is the permutation deformed by the      matrix.
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The condition ψ∆ = ∆ means that the coproduct is co-commutative. If it is non-co-commutative, then the per-
mutation is not a module homomorphism. The existence of the R-matrix in the quasi-triangular context allows to
circumvent this issue. We can define a modified permutation ψR

ψR : V ⊗W → W ⊗ V

v ⊗ w → ψ(v ⊗ w) ≡ ψ(Rv ⊗ w) =
∑

ψ(R1v ⊗R2w) =
∑

R2w ⊗R1v. (60)

Using the key property ψ ∆X = R∆XR−1 of a quasi-triangular Hopf algebra, we have that

ψR(X(v ⊗ w)) = ψ(RX(v ⊗ w)) = ψ(R∆Xv ⊗ w) = ψ((ψ∆X)Rv ⊗ w) = ∆Xψ(Rv ⊗ w) = X(ψR(v ⊗ w)). (61)

Hence, even though the coproduct is not co-commutative, we have constructed a permutation ψR which is a module
homomorphism, thanks to the R-matrix [? ? ]. We can use this deformed permutation to define a new tensor
operator.

Lemma II.5. Let t be a tensor operator, then the operator3 (2)t ≡ ψR(t ⊗ 1)ψ−1
R = R21(1 ⊗ t)R−1

21 is a tensor
operator with same rank as t.

To define the tensor product of tensor operators we then use the lemma II.4 with (1)t = t ⊗ 1 and (2)t. Indeed,
since both (1)t and (2)t are tensor operators, the operator

(1)t (2)t = (t⊗ 1)R21(1⊗ t)R−1
21 (62)

will be a tensor operator.
We can extend the construction to many tensor products and consider tensor operators (i)t associated to the ith

position in a tensor product.

We can extend the operations of scalar product and vector product to these operators.

(i)tji · (k)tjk = δjkji

∑

m

(tji
m ⊗ 1)R21(1⊗ t̃ji

m)R−1
21 , (63)

(i)t1 ∧q
(k)t1 = (64)

In particular we can look at the norm of (i)t which can be directly deduced from the norm t · t. For simplicity we
show the calculation for (2)t, as the result can be easily extended.

(2)t · (2)t = ψ(t⊗ 1)ψ−1 · ψ(t⊗ 1)ψ−1 = ψ((t · t)⊗ 1)ψ−1 = 1⊗ t · t, (65)

where in the last equality we have use the fact that the norm t · t commutes with the generators Jα (from Lemma
I.1) and hence with the R-matrix.

• The norm of the vector operator (i)t1 is a natural candidate to discuss the notion of area.

• The invariant operator
(
(i)t1 ∧q

(j)t1
)
· (k)t is a natural candidate for the volume operator.

• The quantization of the angle is given as (i)t1 · (j)t1.

All these formulae boil down to the known formulae when q → 1.

III. REALIZATION OF TENSOR OPERATORS OF RANK 1/2 AND 1 FOR Uq(su(2))

The abstract theory of tensor operators has been summarized above. We want to illustrate the construction by
giving some realization of these tensor operators. In the context of LQG, it happens that these tensor operators have
already been identified indirectly in different works, in particular in the U(n) formalism.

Before discussing the realization of the tensor operators in the Uq(su(2)) case, we can discuss quickly the su(2) case.
If we look first at the rank 1/2 operators t1/2 we note that from (36) we have

3 We have (R21)−1 = (R−1)21.

ψR = ψ ◦R
R
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21 (62)

will be a tensor operator.
We can extend the construction to many tensor products and consider tensor operators (i)t associated to the ith

position in a tensor product.

We can extend the operations of scalar product and vector product to these operators.

(i)tji · (k)tjk = δjkji

∑

m

(tji
m ⊗ 1)R21(1⊗ t̃ji

m)R−1
21 , (63)

(i)t1 ∧q
(k)t1 = (64)

In particular we can look at the norm of (i)t which can be directly deduced from the norm t · t. For simplicity we
show the calculation for (2)t, as the result can be easily extended.

(2)t · (2)t = ψ(t⊗ 1)ψ−1 · ψ(t⊗ 1)ψ−1 = ψ((t · t)⊗ 1)ψ−1 = 1⊗ t · t, (65)

where in the last equality we have use the fact that the norm t · t commutes with the generators Jα (from Lemma
I.1) and hence with the R-matrix.

• The norm of the vector operator (i)t1 is a natural candidate to discuss the notion of area.

• The invariant operator
(
(i)t1 ∧q

(j)t1
)
· (k)t is a natural candidate for the volume operator.

• The quantization of the angle is given as (i)t1 · (j)t1.

All these formulae boil down to the known formulae when q → 1.

III. REALIZATION OF TENSOR OPERATORS OF RANK 1/2 AND 1 FOR Uq(su(2))

The abstract theory of tensor operators has been summarized above. We want to illustrate the construction by
giving some realization of these tensor operators. In the context of LQG, it happens that these tensor operators have
already been identified indirectly in different works, in particular in the U(n) formalism.

Before discussing the realization of the tensor operators in the Uq(su(2)) case, we can discuss quickly the su(2) case.
If we look first at the rank 1/2 operators t1/2 we note that from (36) we have

3 We have (R21)−1 = (R−1)21.

ψR = ψ ◦R

Intertwinner observables from tensor operators
From spinor operators:

From vector operators:

Recover the U(n) formalism!

“Scalar product”

“Vector product”

Quantization of cosine
and area/length

Building block for volume operator

Eij ∝
∑

m1m2

qC
1/2 1/2 0
m1 m2 0

(i)T 1/2
m1

(j)T̃ 1/2
m2 → a†iaj + b†i bj for q → 1

(i)t1 · (j)t1 ≡
∑

m1m2

qC
1 1 0

m1 m2 0
(i)t1

m1
(j)t1

m2

(
(i)t1 ∧ (j)t1

)

M
≡

∑

m1m2

qC
1 1 1

m1 m2 M
(i)t1

m1
(j)t1

m2

(k)t1 ·
(

(i)t1 ∧ (j)t1
)

R



We can calculate explicitly the action of the scalar product on intertwinner.

Hyperbolic cosine law
revisited

α



We can calculate explicitly the action of the scalar product on intertwinner.

Hyperbolic cosine law
revisited

α

ja

jbjc

qιabc

q = e!p/!c



We can calculate explicitly the action of the scalar product on intertwinner.

Hyperbolic cosine law
revisited

ja

jbjc

qιabc

q = e!p/!c



We can calculate explicitly the action of the scalar product on intertwinner.

Hyperbolic cosine law
revisited

ja

jbjc

qιabc

(c)t1 · (b)t1| qιabc〉 =

q = e!p/!c



We can calculate explicitly the action of the scalar product on intertwinner.

Hyperbolic cosine law
revisited

We have recovered a quantization of the hyperbolic cosine law!

ja

jbjc

qιabc

(c)t1 · (b)t1| qιabc〉 =

cos α =
− cosh la

!c
+ cosh lb

!c
cosh lc

!c

sinh lb
!c

sinh lc
!c

q = e!p/!c

− cosh !p

!c
cosh

[
(ja + 1

2 ) !p

!c

]
+ cosh

[
(jb + 1

2 ) !p

!c

]
cosh

[
(jc + 1

2 ) !p

!c

]

sinh
[
(jb + 1

2 ) !p

!c

]
sinh

[
(jc + 1

2 ) !p

!c

]



Outlook
Main results: 

Tensor operators are a key-tool to construct  (kinematic) observables in loop quantum 
gravity.

We are able to construct kinematical observables in the quantum group case.

To explore further:

The geometric observables built from quantum group have to be studied further (eg the 
volume operator).

We have a generalization of the U(n) formalism to the quantum group case, however it is 
not clear yet if this is                  (ie a deformation of the U(n) formalism). 

The hamiltonian constraint in 3d can be constructed using the U(n) formalism (Bonzom-
Livine). Hopefully, using the quantum group generalization will provide a better 
understanding of why a quantum group structure appears due to the presence of the 
cosmological constant. 

We probably have the right framework to study twisted geometries in the presence of a 
cosmological constant.

Uq(u(n))


