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TAKE AWAY MESSAGE

We constructed a multicritical 2 dimensional causal dynamical triangulation. This means we were able to find a solvable model of matter coupled to quantum gravity in the context of CDT.

CAUSAL DYNAMICAL TRIANGULATIONS
Causal Dynamical Triangulations (CDT) regularize the gravi-
tational path integral.
In CDT a causality condition is included in the sum over all
triangulations to give a clear way how to wick rotate from
lorentzian to euclidean signature. This is achieved by requir-
ing the triangulation to have a time foliation.
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This is an example of a CDT with three moments of time,
t− 1, t, t+ 1.

The triangulations contributing to CDT are more regular than
those in euclidean dynamical triangulations. This leads to a
more desirable behavior.

• Monte Carlo Simulations in 4d find deSitter space-time
and a mini-superspace action

• the dominant contributions to the path integral are not
degenerate

• it is very likely that there exists a 2nd order phase transi-
tion which allows for a continuum limit.

For a review on CDT see [1].

BRANCHED POLYMERS
Branched Polymer like configurations dominate in the eu-
clidean path integral. They can be described mathematically
as rooted tree graphs.

Ironically, although they are not prevalent in the path
integral for CDT, there is a way to map a 2 dimensional CDT
uniquely into a branched polymer.

• erase all space-like edges
(all edges connecting vertices at the same time t)

• erase the leftmost edge at every vertex

Green lines are the edges belonging to the branched polymer.

MULTICRITICAL BRANCHED POLYMERS

The partition function for branched polymers is

Z(µ) =
∑
BP

∏
i

vi
∏
l

eµ . (1)

The weights vi depend on the order of the vertex. This graph
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leads to a closed equation

eµ = 1 + v2Z + v3Z
3 . . .

Z
:= f(Z)

Z
:= F (Z) . (2)

We defined a partition function for a BP with dimers

Z(µ, ζ) =
∑
BP

∏
i

vi
∏
l

eµ
∑

HD(BP )

ζ |HD(BP )| , (3)

ζ is the dimer weight, HD(BP ) are all ways to place dimers
on a given BP and |HD(BP )| is the number of dimers in a
given configuration. We make a split in two partition
functions, W based in a dimer and a Z.
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The dimer/ BP rooted in a dimer is marked red in this figure.
The graphic then corresponds to

eµ = 1 + Z2 + 2ZW
Z

, eµ = ζ
1 + Z2

W
. (4)

For the multicritical point we now need

∂µ(Z, ζc)
∂Z

∣∣∣∣
Zc

= ∂2µ(Z, ζc)
∂Z2

∣∣∣∣
Zc

= 0 . (5)

This can be solved and we find the critical exponents

γ = 1
3 dH = 3

2 σ = 1
2 . (6)

MULTICRITICAL BEHAVIOR
A critical point signals a phase transition. At a n-multicritical
point the first n−1 derivatives of a coupling µ by the partition
function Z are zero.

∂µ

∂Z

∣∣∣∣
Zc

= · · · = ∂n−1µ

∂Zn−1

∣∣∣∣
Zc

= 0 (7)

In 2d this has been examined analytically.

• the continuum limit at a critical point is a CFT
• the continuum limit of a triangulation with dimers is

conformal matter coupled to quantum gravity [2]
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MATRIX MODEL
Matrix models are a way to calculate the partition function for
a triangulation as the Gaussian integral over a matrix.

Z(λ, gs) =
∫

dφ e
N
gs

trV (φ) . (8)

The potential for the multicritical model is given as

V (φ) = 1
2φ

2 − λφ− λφ3 − λ3ξ

2 φ4 . (9)

With ξ = 0 this is the normal CDT matrix model. The disc
amplitude can be calculated from the self consistent equation

gsW (x)2 = V ′(x)W (x)−Q(x) Q(x) = c2x
2 + c1x+ c0 ,

(10)
as expressed in this graph:
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An ansatz assuming one cut in the disc function leads to

W (x) =
V ′(x)− 2λ2

cζ(x− bc)2
√

(x− cc)(x− ac)
2gs

, (11)

where all constants at their critical values are functions of gs.
We now take a double scaling limit

gs = Gsε
4 λ = λ∗ + Λ̃ε2 − λε3 ζ = ζ∗ −

1
2Λ̃ε3 . (12)

These scaling relations can be motivated by the
multicriticality conditions.
After a last redefinition

Λcdt = Λ + 32
√

351/4

81 , Xcdt = X + 2√
351/4

G1/4
s , (13)

we find the disc function for the multicritical CDT

W (x) = 1
ε

1
Xcdt + Λ1/3

cdt

. (14)


