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Introduction

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity.

The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by the
Einstein-Hilbert action.

Z =

∫
D[g ]e iSEH [g ] →

∑
T

e−SR [T ]

To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.

The path integral is written as a non-perturbative sum over all
causal triangulations T . (lattice regularization)

Wick rotation is well defined due to global proper-time
foliation. (at → iat)
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Causal Dynamical Triangulation

4D simplicial manifold (S3 × S1) is obtained by gluing pairs
of 4-simplices along their 3-faces. The metric is flat inside
each 4-simplex. Curvature is localized at triangles.

Causal Dynamical Triangulations assume global proper-time
foliation. Spatial slices (leaves) are build from equilateral
tetrahedra. They have fixed topology (S3) and are not
allowed to split in time.

Foliation distinguishes between time-like (at) and spatial-like
links (as).
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Regge action

The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called Regge action

SE [g ] = − 1

G

∫
dt

∫
dDx
√
g(R − 2Λ)

SR [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)

at
as

N0,N4,N14 - number of vertices, simplices, simplices of type {1, 4}
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De Sitter phase
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In the de Sitter phase, the average volume is given by the formula

n̄t ≡ 〈nt〉 = H cos3
( t

W

)
.

It describes Euclidean de Sitter space (S4), which is a maximally
symmetric classical vacuum solution of the minisuperspace action

S [v ] =
1

G

∫
v̇2

v
+ v

1
3 − λvdt, ds2 = dτ2 + a2(τ) dΩ2

3, v = a3
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Quantum fluctuations

Correlations of spatial volume fluctuations around the classical
solution n̄t are given by the semiclassical expansion of the
effective action describing quantum fluctuations,

Cij ≡ 〈(ni − n̄i )(nj − n̄j )〉, [C−1]ij =
∂2S [n]

∂ni∂nj

∣∣∣∣
n=n̄

.

The effective action is a discretization of the minisuperspace
action,

S [n] =
1

Γ

∑
t

(
(nt+1 − nt)2

nt+1 + nt
+ µn

1/3
t − λnt

)
m

S [v ] =
1

G

∫
v̇2

v
+ v

1
3 − λvdt
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Transfer matrix

The model is completely determined by transfer matrix M labeled
by 3D triangulations τ .

Z =
∑
T

e−SR [T ] = TrMT

P(T )(τ1, . . . , τT ) =
1

Z
〈τ1|M|τ2〉〈τ2|M|τ3〉 . . . 〈τT |M|τ1〉

|n〉 =
∑
τ∼n

|τ〉 −→ ρ(n) = |n〉〈n| ≡
∑
τ∼n

|τ〉〈τ |

P(T )(n1, . . . , nT ) =
1

Z
〈n1|M|n2〉〈n2|M|n3〉 . . . 〈nT |M|n1〉
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Effective transfer matrix

The effective action obtained from the covariance matrix

S [n] =
1

Γ

∑
t

(
(nt+1 − nt)2

nt+1 + nt
+ µn

1/3
t − λnt

)
suggests, that the measurements for aggregate states |n〉 are well
described by an effective transfer matrix M labeled by the scale
factor,

Seff =
∑

t

Leff (nt , nt+1)

Leff (n,m) =
1

Γ

[
(n −m)2

n + m
+ µ

(
n + m

2

)1/3

− λn + m

2

]
〈n|M|m〉 = N e−Leff (n,m)
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Measurements

Assuming that

P(T )(n1, . . . , nT ) =
1

Z
〈n1|M|n2〉〈n2|M|n3〉 . . . 〈nT |M|n1〉,

we can measure elements of M

〈n|M|m〉 =
√

P(2)(n,m) or 〈n|M|m〉 =
P(3)(n1 = n, n2 = m)√
P(4)(n1 = n, n3 = m)

and check that it is consistent with the minisuperspace model

〈n|M|m〉 = N e
− 1

Γ

[
(n−m)2

n+m
+µ( n+m

2 )
1/3−λ n+m

2

]
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Kinetic part

The kinetic term

〈n|M|m〉 = N e
− 1

Γ

[
(n−m)2

n+m
+µ( n+m

2 )
1/3−λ n+m

2

]

causes a Gaussian behaviour for n + m = c

〈n|M|c − n〉 = N (c)e
− (2n−c)2

k(c) , k(c) = Γ · c

Γ ≈ 26.1 is constant for all ranges of n.
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Potential part

The potential term

〈n|M|m〉 = N e
− 1

Γ

[
(n−m)2

n+m
+µ( n+m

2 )
1/3−λ n+m

2

]

can be extracted from gathered data for n = m

log〈n|M|n〉 = −1

Γ

(
µn1/3 − λn

)
+ const
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The stalk

For small volumes n we observe strong discretization effects,

P(3)(n) =
1

TrM3
〈n|M3|n〉.

Split into three families. We smooth out M by summing over the
families.
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The stalk

The effective action for the stalk has the same form as for the blob

Gaussian
for n + m = c

〈n|M|m〉 = N e
− 1

Γ

[
(n−m)2

n+m
+v( n+m

2 )
]
, v(x) = µx1/3 − λx + δx−ρ

The kinetic term is in complete agreement, k(c) = Γ · c
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The stalk

The effective action for the stalk has the same form as for the blob

minisuperspace
potential

possible curvature
corrections

〈n|M|m〉 = N e
− 1

Γ

[
(n−m)2

n+m
+v( n+m

2 )
]
, v(x) = µx1/3 − λx + δx−ρ

The potential term is slightly modified for small volumes
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Conclusions

The transfer matrix allows to directly measure the effective
action

Measurement of the transfer matrix is much faster then of the
covariance matrix

The effective action is fully consistent with the
minisuperspace model, although in CDT we do not freeze any
degrees of freedom

For small volumes we observe strong discretization effects.
Despite different nature, after the smoothing procedure, the
effective action for small volumes is basically the same as for
large volumes, with a small modification in the potential.
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