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Space-times and geodesics

I The observation of particles and light allows to conclude on
physical properties of the space-time.

I A space-time may be characterized by its complete set of
geodesics.

Geodesics and analytical solutions

I The complete set of geodesics can best be explored by using
analytical methods

I Analytical solutions for geodesics in a wide range of
space-times can be found by algebro-geometric methods
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Geodesic equation

I describes the motion of massive test particles and light

d2xµ

ds2
+ Γµ

ρσ

dxρ

ds

dxσ

ds
= 0

where Γµ
ρσ = 1

2gµα(∂ρgσα + ∂σgρα − ∂αgρσ), µ = 0, 1, 2, 3.

I Normalisation gµν
dxµ

ds
dxν

ds = ε,
ε = 0 for light, ε = 1 for particles.

Constants of motion
I Symmetries: spherical, axial

I Energy E, angular momentum L, Carter constant C.

I Reduction to a decoupled system of ODEs
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In considered space-times

I Equations of motion given by (radial and latitudinal motion)(
xi dx

dy

)2

= P (x; p).

Here:

I P polynomial in x,

I p = {p1, . . . , pn} set of parameters of the space-time and the
test particle (e.g. mass, energy, . . .).

Neccessary condition

x, p such that P (x; p) ≥ 0.
→ Determination and classification of all possible orbit types.
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Find solution x(y)(
xi dx

dy

)2

= P (x; p) ⇔
∫ x

x0

xidx√
P (x; p)

= y − y0 .

I Spherically symmetric space-times: x(y) = r(ϕ).

I Axially symmetric space-times: x(y) = r(λ) or x(y) = θ(λ),
λ affine parameter (Mino time).

Periodicity

I x(y) should be independent from the chosen path of
integration

I If ω :=

∮
xidx√
P (x)

6= 0 then: x(y) = x(y − ω).
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ODE as algebraic curve

With w = dx
dy : ODE is algebraic curve x2iw2 − P (x; p) = 0

I P of order 3 or 4, i = 0: elliptic curve, genus 1

I P of order 2g + 1, 2g + 2, i < g: hyperelliptic curve, genus g

Topology: Riemann surface
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ODE as algebraic curve

With w = dx
dy : ODE is algebraic curve x2iw2 − P (x; p) = 0

I P of order 3 or 4, i = 0: elliptic curve, genus 1

I P of order 2g + 1, 2g + 2, i < g: hyperelliptic curve, genus g

Topology: Riemann surface

I The genus g corresponds to the number of ’holes’ in the
Riemann surface

I There are 2g independent closed integration pathes whose
integrals do not vanish.

→ The solution function x(y) needs to have 2g periods.
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Elliptic curves

I Curve w2 = 4x3 − g2x− g3:
parametrisied by Weierstrass elliptic
function: x = ℘(z), w = ℘′(z)

I In Schwarzschild:
r(ϕ) = 6M

12℘(ϕ−c)+1 , c = c(r0, ϕ0)

I Analogously:
Kerr(-Newman), Taub-NUT, . . .
all Plebański-Demiański
space-times with vanishing
acceleration and cosmological
constant
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Hyperelliptic curves

I Functions in a single complex
variable: no more than 2 periods

I Solution: more variables, restriction
to one-dimensional submanifold

I Schwarzschild-de Sitter:
r(ϕ) = −M σ1

σ2
(f(ϕ), ϕ), where

σ(f(x), x) = 0 (theta divisor)

I Analogously: Kerr-de Sitter,
Plebański-Demiański with Λ 6= 0
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Post-Newton and Schwarzschild

I Post-Newtonian: ω̇ ≈ 6πM
p

I General formulation: ω̇ = 2π(
Ωϕ

Ωr
− 1)

I Analytic sol. Schwarzschild: ω̇ = 4LK(k)√
(E2−1)rp(ra−r0))

− 2π.

I Analogously in Kerr; Lense Thirring effect: 2π(
Ωϕ

Ωθ
− 1)

With cosmological constant

I Complete hyperelliptic integral: KAB(~k) :=
∫ 1
0

(At+B)dt√
t

Q3
i=1(1−k2

i t)

I SdS: ω̇ = 2c0KAB(~k)√
D

+
∑3

i=1
2ciΠAB(Ni,~k)√

D
− 2π

I Computation: theta-constants, AGM for genus 2

Center of Applied Space Technology and Microgravity 14



Effects in different space-times 6/27/2012 | Prague

Linear effects

I Schwarzschild (M 6= 0): Periapsis shift only effect

I Taub-NUT space-time (M 6= 0, n 6= 0):
Motion on a cone instead of plane

I Kerr space-time (M 6= 0, a 6= 0): Periapsis shift changed,
Lense-Thirring nonzero → precession of orbital plane in weak
field. Both independent from direction of rotation of particle

I Kerr-Taub-NUT space-time (M 6= 0, a 6= 0, n 6= 0):
precession of the orbital cone

I Kerr-Taub-NUT-de Sitter (M 6= 0, a 6= 0, n 6= 0,Λ 6= 0):
Periaspsis shift is changed by Λ, but tiny.
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Geodesics

I Analytic pulsar timing for black hole companions

I Bending of light in all Plebański-Demiański space-times

I Geodesics in multipole space-times

I Geodesics in the higher-dimensional Meyers-Perry space-times

Algebro-geometric methods

I More general curves, e.g. quartic: (w − P (x))2 = Q(x)

→ Horava-Lifshitz, Gauss-Bonnet gravity

I Fast computation of Periods/Observables for higher genera

I Analytical solutions in fast semi-analytical codes
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