Geodesic equations and algebro-geometric methods

Eva Hackmann, Claus Lämmerzahl ZARM, University of Bremen, Germany

Valeria Kagramanova, Jutta Kunz Physics department, University of Oldenburg, Germany

Equations of motion

Algebro-geometric methods

Observables

Equations of motion

Algebro-geometric methods

Observables

Space-times and geodesics

- ▶ The observation of particles and light allows to conclude on physical properties of the space-time.
- A space-time may be characterized by its complete set of geodesics.

Geodesics and analytical solutions

- ► The complete set of geodesics can best be explored by using analytical methods
- Analytical solutions for geodesics in a wide range of space-times can be found by algebro-geometric methods

Equations of motion

Algebro-geometric methods

Observables

Geodesic equation

describes the motion of massive test particles and light

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\rho\sigma} \frac{dx^{\rho}}{ds} \frac{dx^{\sigma}}{ds} = 0$$

where
$$\Gamma^{\mu}_{\rho\sigma}=\frac{1}{2}g^{\mu\alpha}(\partial_{\rho}g_{\sigma\alpha}+\partial_{\sigma}g_{\rho\alpha}-\partial_{\alpha}g_{\rho\sigma})$$
, $\mu=0,1,2,3$.

Normalisation $g_{\mu\nu} \frac{dx^{\mu}}{ds} \frac{dx^{\nu}}{ds} = \epsilon$, $\epsilon = 0$ for light, $\epsilon = 1$ for particles.

Constants of motion

- ► Symmetries: spherical, axial
- ▶ Energy E, angular momentum L, Carter constant C.
- ► Reduction to a decoupled system of ODEs

In considered space-times

► Equations of motion given by (radial and latitudinal motion)

$$\left(x^i \frac{dx}{dy}\right)^2 = P(x; p).$$

Here:

- ightharpoonup P polynomial in x,
- ▶ $p = \{p_1, \dots, p_n\}$ set of parameters of the space-time and the test particle (e.g. mass, energy, ...).

Neccessary condition

x, p such that $P(x; p) \ge 0$.

→ Determination and classification of all possible orbit types.

Equations of motion

Algebro-geometric methods

Observables

Find solution x(y)

$$\left(x^i \frac{dx}{dy}\right)^2 = P(x; p) \quad \Leftrightarrow \quad \int_{x_0}^x \frac{x^i dx}{\sqrt{P(x; p)}} = y - y_0.$$

- ▶ Spherically symmetric space-times: $x(y) = r(\varphi)$.
- Axially symmetric space-times: $x(y) = r(\lambda)$ or $x(y) = \theta(\lambda)$, λ affine parameter (Mino time).

Periodicity

- ightharpoonup x(y) should be independent from the chosen path of integration
- ▶ If $\omega := \oint \frac{x^i dx}{\sqrt{P(x)}} \neq 0$ then: $x(y) = x(y \omega)$.

ODE as algebraic curve

With $w = \frac{dx}{dy}$: ODE is algebraic curve $x^{2i}w^2 - P(x; p) = 0$

- ▶ P of order 3 or 4, i = 0: elliptic curve, genus 1
- ▶ P of order 2g + 1, 2g + 2, i < g: hyperelliptic curve, genus g

Topology: Riemann surface

ODE as algebraic curve

With $w = \frac{dx}{dy}$: ODE is algebraic curve $x^{2i}w^2 - P(x; p) = 0$

- ▶ P of order 3 or 4, i = 0: elliptic curve, genus 1
- ▶ P of order 2g + 1, 2g + 2, i < g: hyperelliptic curve, genus g

Topology: Riemann surface

- ► The genus *g* corresponds to the number of 'holes' in the Riemann surface
- ▶ There are 2g independent closed integration pathes whose integrals do not vanish.
- \rightarrow The solution function x(y) needs to have 2g periods.

Elliptic curves

- ► Curve $w^2 = 4x^3 g_2x g_3$: parametrisied by Weierstrass elliptic function: $x = \wp(z)$, $w = \wp'(z)$
- In Schwarzschild: $r(\varphi) = \frac{6M}{12\wp(\varphi-c)+1}, c = c(r_0, \varphi_0)$
- Analogously: Kerr(-Newman), Taub-NUT, ... all Plebański-Demiański space-times with vanishing acceleration and cosmological constant

Hyperelliptic curves

- ► Functions in a single complex variable: no more than 2 periods
- ► Solution: more variables, restriction to one-dimensional submanifold
- Schwarzschild-de Sitter: $r(\varphi) = -M \frac{\sigma_1}{\sigma_2}(f(\varphi), \varphi)$, where $\sigma(f(x), x) = 0$ (theta divisor)
- ► Analogously: Kerr-de Sitter, Plebański-Demiański with $\Lambda \neq 0$

Equations of motion

Algebro-geometric methods

Observables

Post-Newton and Schwarzschild

- ▶ Post-Newtonian: $\dot{\omega} \approx \frac{6\pi M}{p}$
- lacktriangle General formulation: $\dot{\omega}=2\pi(rac{\Omega_{arphi}}{\Omega_{r}}-1)$
- ▶ Analytic sol. Schwarzschild: $\dot{\omega} = \frac{4LK(k)}{\sqrt{(E^2-1)r_{\rm p}(r_{\rm a}-r_0))}} 2\pi.$
- lacktriangle Analogously in Kerr; Lense Thirring effect: $2\pi(rac{\Omega_{arphi}}{\Omega_{ heta}}-1)$

With cosmological constant

- ▶ Complete hyperelliptic integral: $K_{AB}(\vec{k}) := \int_0^1 \frac{(At+B)dt}{\sqrt{t\prod_{i=1}^3(1-k_i^2t)}}$
- ► SdS: $\dot{\omega} = \frac{2c_0 K_{AB}(\vec{k})}{\sqrt{D}} + \sum_{i=1}^{3} \frac{2c_i \Pi_{AB}(N_i, \vec{k})}{\sqrt{D}} 2\pi$
- ► Computation: theta-constants, AGM for genus 2

Linear effects

- ▶ Schwarzschild ($M \neq 0$): Periapsis shift only effect
- ► Taub-NUT space-time $(M \neq 0, n \neq 0)$: Motion on a cone instead of plane
- ▶ Kerr space-time $(M \neq 0, a \neq 0)$: Periapsis shift changed, Lense-Thirring nonzero \rightarrow precession of orbital plane in weak field. Both independent from direction of rotation of particle
- ► Kerr-Taub-NUT space-time $(M \neq 0, a \neq 0, n \neq 0)$: precession of the orbital cone
- ► Kerr-Taub-NUT-de Sitter $(M \neq 0, a \neq 0, n \neq 0, \Lambda \neq 0)$: Periaspsis shift is changed by Λ , but tiny.

Equations of motion

Algebro-geometric methods

Observables

Geodesics

- Analytic pulsar timing for black hole companions
- ▶ Bending of light in all Plebański-Demiański space-times
- Geodesics in multipole space-times
- ► Geodesics in the higher-dimensional Meyers-Perry space-times

Algebro-geometric methods

- ▶ More general curves, e.g. quartic: $(w P(x))^2 = Q(x)$
- → Horava-Lifshitz, Gauss-Bonnet gravity
 - ► Fast computation of Periods/Observables for higher genera
 - ► Analytical solutions in fast semi-analytical codes

