Is there a flatness problem

In classical cosmology?
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Overview

e Basic cosmology

e [ he qualitative flatness problem

e [ he quantitative flatness problem
— collapsing models
— nearly critical models

— freely expanding models

e SO what?



Basic Cosmology
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Qualitative Flatness Problem
Is a ‘fine tuning’

of initial conditions required?

e Definition

— Since 2 = 1 is an unstable fixed point,
why isn’t 2 very large or very small to-
day?

— Similar question for !

— @Generic ‘problem’ is not departure from
k = O but rather departure from the
Einstein-de Sitter model.

— In general, always think ‘€2 and A’ when
you see (2, both later in this talk and in
most of the literature.



e Easy (but most important) solution: For
any value of €2 we observe, we can always
find a time in the past when €2 was arbi-
trarily close to 1. Thus, the problem ex-
ists whatever value of {2 we observe today,
or it doesn’t exist at all, but just reflects
the boundary conditions of the Friedmann
equations.

e Trivial solution: Einstein-de Sitter model
must hold (now ruled out observationally
but not long ago popular to the extent of
dogma), however (e.g. Coles & Ellis):

— We do live at a special time.

— What is the probabibility distribution of
initial conditions? (See papers by Coles
and Evrard.)

— 2 =1 is an unstable fixed point.



Quantitative Flatness Problem
Should we surprised
that Qg = 17

e Collapsing models
e Nearly critical models

e Freely expanding models
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Collapsing Models

e Cosmological parameters evolve to infinity
in a finite time — flat distribution impos-
Sible.

e What range of parameter space is traversed
during what fraction of the lifetime of the
universe?

e Original argument?
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Nearly Critical Models

2702 )\

e J constant of motion a = sign(K) TR

e As far as I know, this was first used in the
context of the flatness problem by Kayll
Lake.

e This is a natural parameter to distinguish
trajectories in the A-2 plane.
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Quantitative Flatness Problem

Results

e Collapsing models
— mathematically straightforward
— independent of Hp, astrophysics
— allowed range is ‘large’ but proves the
point
e Nearly critical models
— based on improbability of fine-tuning
— independent of Hp, astrophysics

— allowed range very small



e Freely expanding models
— based on weak anthropic principle
— assumptions about Hg, astrophysics

— excludes very small values of 25 (as well
as \g very close to 1)

e If one a) assumes that A > 0 and b) consid-
ers only the ‘weak flatness problem’ (should
we wonder that the universe is nearly flat),
then Lake’s fine-tuning argument is all one
needs.
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