Is there a flatness problem

in classical cosmology?

Phillip Helbig

Overview

- Basic cosmology
- The qualitative flatness problem
- The quantitative flatness problem
 - collapsing models
 - nearly critical models
 - freely expanding models
- So what?

Basic Cosmology

$$\dot{R}^2 = \frac{8\pi G\rho R^2}{3} + \frac{\Lambda R^2}{3} - kc^2$$

where k = -1, 0, +1 depending on curvature

$$H := \frac{\dot{R}}{R}$$

$$\lambda := \frac{\Lambda}{3H^2}$$

$$\Omega := \frac{\rho}{\rho_{\text{crit}}} \equiv \frac{8\pi G \rho}{3H^2}$$

$$K := \Omega + \lambda - 1$$

$$q := \frac{-\ddot{R}R}{\dot{R}^2} \equiv \frac{-\ddot{R}}{RH^2} \equiv \frac{\Omega}{2} - \lambda$$

$$R = \frac{c}{H} \frac{\operatorname{sign}(k)}{\sqrt{|\Omega + \lambda - 1|}} = \frac{c}{H} \frac{\operatorname{sign}(k)}{\sqrt{|K|}}$$

$$\dot{R}^2 = \dot{R}_0^2 \left(\frac{\Omega_0 R_0}{R} + \frac{\lambda_0 R^2}{R_0^2} - K_0 \right)$$

$$\left(\frac{\dot{R}}{R}\right)^2 = \left(\frac{\dot{R}_0}{R_0}\right)^2 \left(\frac{\Omega_0 R_0^3}{R^3} + \lambda_0 - \frac{K_0 R_0^2}{R^2}\right)$$

$$H^{2} = H_{0}^{2} \left(\frac{\Omega_{0} R_{0}^{3}}{R^{3}} + \lambda_{0} - \frac{K_{0} R_{0}^{2}}{R^{2}} \right)$$

$$\lambda = \lambda_0 \left(\frac{H_0}{H}\right)^2$$

$$\rho = \left(\frac{\rho_0 R_0}{R}\right)^3$$

$$\Omega = \Omega_0 \left(\frac{H_0}{H}\right)^2 \left(\frac{R_0}{R}\right)^3$$

possible worlds

random figure from the internet

Qualitative Flatness Problem

Is a 'fine tuning'

of initial conditions required?

Definition

- Since $\Omega=1$ is an unstable fixed point, why isn't Ω very large or very small today?
- Similar question for λ !
- Generic 'problem' is not departure from k=0 but rather departure from the Einstein-de Sitter model.
- In general, always think ' Ω and λ ' when you see Ω , both later in this talk and in most of the literature.

- Easy (but most important) solution: For any value of Ω we observe, we can always find a time in the past when Ω was arbitrarily close to 1. Thus, the problem exists whatever value of Ω we observe today, or it doesn't exist at all, but just reflects the boundary conditions of the Friedmann equations.
- Trivial solution: Einstein-de Sitter model must hold (now ruled out observationally but not long ago popular to the extent of dogma), however (e.g. Coles & Ellis):
 - We do live at a special time.
 - What is the probabibility distribution of initial conditions? (See papers by Coles and Evrard.)
 - $-\Omega = 1$ is an *unstable* fixed point.

Quantitative Flatness Problem

Should we surprised

that $\Omega_0 \approx 1$?

- Collapsing models
- Nearly critical models
- Freely expanding models

Collapsing Models

- What range of parameter space is traversed during what fraction of the lifetime of the universe?
- Original argument?

age fraction

contours, right to left: 0.5, 0.6, 0.7, 0.8, 0.9

Nearly Critical Models

- \exists constant of motion $\alpha = \text{sign}(K) \frac{27\Omega^2 \lambda}{4K^3}$.
- As far as I know, this was first used in the context of the flatness problem by Kayll Lake.
- This is a natural parameter to distinguish trajectories in the λ - Ω plane.

contours: 0.2, 0.4 ... 2, 3 ... 10, 20, 50, 100, 200, 500, 1000, 2000

contours: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100

Quantitative Flatness Problem

Results

- Collapsing models
 - mathematically straightforward
 - independent of H_0 , astrophysics
 - allowed range is 'large' but proves the point
- Nearly critical models
 - based on improbability of fine-tuning
 - independent of H_0 , astrophysics
 - allowed range very small

- Freely expanding models
 - based on weak anthropic principle
 - assumptions about H_0 , astrophysics
 - excludes very small values of Ω_0 (as well as λ_0 very close to 1)
- If one a) assumes that λ > 0 and b) considers only the 'weak flatness problem' (should we wonder that the universe is nearly flat), then Lake's fine-tuning argument is all one needs.

More details

- G. Evrard & P. Coles: 'Getting the Measure of the Flatness Problem'
 CQG, 12, 10, L93-98 (1995)
- P. Coles & G. F. R. Ellis: Is the Universe Open or Closed?
 Cambridge: CUP (1997)
- K. Lake: 'The Flatness Problem and Λ'
 PRL, 94, 20, 201102 (2005)
- P. Helbig: 'Is there a flatness problem in classical cosmology?'
 MNRAS, 421, 1, 561–569 (2012)