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@ Introduction

© Part 1: Quasi-local mass on MOTS by curvature invariants

© Part 2: Finding isometric embeddings by embedding flow

Q@ Summary
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Motivation

Diagnosing numerical relativistic two-body simulation

» Follow evolution of mass and spin during inspiral
» Measure initial and final masses

» Extract physical parameters for matching post-Newtonian and
NumRel pieces to full gravitational waveforms

Quasi-circular inspiral
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Post-Newtonian relatrvity perturbation
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Time t
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Measurement surface: 2-sphere bounding a region

Marginally-Outer-Trapped-Surface ¥ Any 2-sphere S and Xj: S — R?

Oers = (Hij — Kiz)g? =0 ij = 0 X§0; X0

bt <0 m ~ §s K" — QdA with

m? = A [1+ (87J/A)?] /167 _
Q =K or /(1K) — (Kijq")?
Brown-York-93 Or Liu-Yau-03
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Measuring mass on MOTS: Two common approx.

MOTS is instantaneously Kerr

» Compute (m,J) by (A, Lequator) » Leguator Dot well-defined in
m = L/(4m) general
J? = (4)2(m%167m/A - 1)
Smarr-73

MOTS is instantaneously axial IH Problematic:
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Measuring mass on MOTS: Two common approx.

MOTS is instantaneously Kerr

» Compute (m,J) by (A, Lequator) » Leguator Dot well-defined in

m = L/(4m) general
J2 — (%)2(777?1677/14 -1) » Several extrema may exist
Smarr-73 > Single points represent geometry

of the surface
» Or extrema of scalar curvature

(A, R™") Lovelace-etal-08

MOTS is instantaneously axial IH Problematic:
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Measuring mass on MOTS: Two common approx.

MOTS is instantaneously Kerr

» Leguator Dot well-defined in

» Compute (m, J) by (A; Lequator)
m = L/(4r)
J? = (4)2(m%167m/A - 1)

general

> Several extrema may exist

> Single points represent geometry

of the surface

» Or extrema of scalar curvature
(A, R™") Lovelace-etal-08

Problematic:

MOTS is instantaneously axial IH

Solve Lyq;; ~ 0, J[x] ~ § "K;;x's'dA

1. Killing transport Dreyer-etal-03

> (1.) x* path-dependent if g;;
non-axial, no divergence free
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Measuring mass on MOTS: Two common approx.

MOTS is instantaneously Kerr

» Compute (m, J) by (A, Lequator)

m = L/(47)
J? = (4)2(m%167m/A - 1)
Smarr-73

» Or extrema of scalar curvature
(A, R™") Lovelace-etal-08

» Leguator Dot well-defined in
general

> Several extrema may exist

> Single points represent geometry
of the surface

Problematic:

MOTS is instantaneously axial TH

Solve Lyq;; ~ 0, J[x] ~ § "K;;x's'dA

1. Killing transport Dreyer-etal-03

2. Minimize functional Matzner-68

FIx] =< Lyqi;Lxq" > /|Ix]]
Similar functional Cook-Whiting-07
Solve EuLag eq Beetle-08

v

> (1.) x* path-dependent if g;;
non-axial, no divergence free

> (2.) No unique functional
> (2.) Solve PDE num. involved

> (1.), (2.) Normalisation of x*
ambiguous!

M. Jasiulek

100y after Einstein in Prag

Novel geometric methods ...



Practical alternative: Compute geometric invariants p,,

(1) =

(%) %)),

=L foedA, <IR>=1

MOTS is instantaneously Kerr
Compute (m, J) by (A, p2("R))

1AG71'
J gc

5 —15-70¢2 31+““ t
p2(1R) = 1850(1736524)_ + 3 C) atan(C)

Advantage:

> Accounting for all points on S
» Averaging lowers the total error

» Technically practical: only
surface integrals

MOTS is instantaneously axial IH

Solve algebraic system relating

(tn (IR), pin (T 2)) <> (Ly, 11)

axial multipole moments of qu, Im¥,
wrt Legendre P,

J~A- ﬁl Ashtekar-etal-04
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» No solution of PDE required
(no additional num. errors)

» Unique multipolar approx. to
perturbed axial metric
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Horizon of collapsing star: Saijo-11

Common horizon of 3D BBH simulation settling to Kerr: Jasiulek-09

Applications to numerical simulations
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Applications to numerical simulations

Horizon of collapsing star: Saijo-11

Common horizon of 3D BBH simulation settling to Kerr: Jasiulek-09 J
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Weyl problem

Find an embedding Xé for 2-metric g4p with YR > 0, det gag > 0 suchJ

that gap = 8AX883X8 0;j (no “standard” num. method applicable)

[sometric embeddings provide

» Unique reference surface in R® Nirenberg-53
» Quasi-local mass Brown-York-93 Liu-Yau-93

» Invariant coarse-graining of tensors in cosmology Korzynski-10

(2, %i5) (R3,645)

! k A
~ 2 0z" Oz
dij = Fz7 ga7 dkl

qzj = 04 — gigl

M. Jasiulek 100y after Einstein in Prag Novel geometric methods ...




Find an embedding Xé for 2-metric g4p with YR > 0, det gag > 0 such
that gap = 04X{0pX} d;; (no “standard” num. method applicable)

Attempts to solve V No solution guaranteed!
» Constructing polyhedra in R3 » Multiple non-regular polyhedra 3
Nollert-Herold-96 » Minimisation problematic
» Minim. functional Bondarescu-02 > Do not address coordinate issue
F[X'] = |lgaB — ¢(X*) aB|| b 3 )
(27’%]') (RS,&]‘)

1 kool
~  _ Oz" Ox
qi; = 927 Oz7 qdkl
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Weyl problem

Find an embedding Xé for 2-metric g4p with YR > 0, det gag > 0 such
that gap = 8AX683X8 0;j (no “standard” num. method applicable)

Attempts to solve Weyl problem: No solution guaranteed!
» Constructing polyhedra in R? = No practical application in
Nollert-Herold-96 NumRel exists !

» Minim. functional Bondarescu-02
F[X'] :=|lgas — 4(X")aBl|

(%, %)

1 kool
~  _ Oz" Ox
qi; = 927 Oz7 qdkl
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Novel algorithm based on Weyl’s method of continuity

Jasiulek-Korzynski-12

» Guaranteed to find embedding: Nirenberg-53
» Decomposes Weyl problem into linear elliptic 1D PDEs, ODEs

» Allows for implementation with spectral methods:
predictable and reasonable computational cost

» Compatible with common 341 codes (arbitrary coords)

Consists of 3 main steps

1. Ricci flow ¢(#);; —%¢(&);; to round metric — conformal fac. o

2. Determine canonical coords x! such that ©g(z)¥ = §% — xixd /12

3. Iterate linearised embedding flow X7, 729 X§
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Novel algorithm based on Weyl’s method of continuity

1. Ricci flow ¢(£);; =®q(#);; to round metric — conformal fac. o

2. Determine canonical coords x! such that ©q(z)¥ = §% — xixd /12

3. Iterate linearised embedding flow Xé 729 X(i)

(2,7(2)i5) & =R[e*7(")q] (R®,5(x)s5)
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Novel algorithm based on Weyl’s method of continuity

s of 3 main steps
1. Ricci flow ¢(2)i; —®¢(2);; to round metric — conformal fac. o
2. Determine canonical coords z? such that ©g(x)¥ = §¥ — xizJ /r?

3. Iterate linearised embedding flow X} 729 X§

2. Step: Determine canonical coords z*, n' = z*/r
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Novel algorithm based on Weyl’s method of continuity

Consists of 3 main steps

1. Ricci flow ¢(#);; —%¢(&);; to round metric — conformal fac. o

2. Determine canonical coords x! such that ©g(z)¥ = §% — xixd /12

3. Iterate linearised embedding flow X7 729 X§

o—0

3. Step: X} ma <Xi1+1) = Xty + Y‘i> - X

(
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Test case: Cigar-shaped test metric + random piece

Ricei flow diffuses

t=0.07,it=20

25k 1
20F 1
4
15F 1
1of : 1
05k 1
0 1 2 3 4 5 6
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Test case: Cigar-shaped test metric + random piece

Embedding flow at ¢
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New methods for quasi-local mass on MOTS based on curvature invariants

> Practical computation of Kerr (m,J) through surface integrals (A4, u2)

> Practical computation of axial (m, J) through surface integrals
(A, 1 (TR), pn (ImW2))
No solution of PDE required, no construction of KVF x*

v

v

Applicable to perturbed axial 2-metrics

New algorithm to compute isometric embeddings

» Solution for admissible 2-metrics guaranteed
Decomposition into sub-steps, solvable via standard numerical methods

Allows for implementation through spectral methods

>
>

» Compatible with existing 34+1 codes in NumRel

» Applications: Brown-York / Liu-Yau masses, numerical cosmology
>

Methods solving Ricci flow, ®A-EV problem interesting for:
MOTS eq, Jang’s eq, Minkowski problem
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Thank you!
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Numerical and technical details

Quasi-local mass through u,

» Representation of surface functions through spherical harmonics
h= S SR @I, @I (nf N
» Exact numerical integration up to ., = Ny/2 — 1 Discroll-Healy-94
» External Cartesian tensor basis for surface tensors and derivatives:
e.g. ¢i; = 8ij — 8i85, ‘Dixj = (Dix;) — Kijxs
> Scalar curvature through Gaufl theorem:
IR =7"TR — 27Rij8i8j + qK:Q — inj inj
» Implicit equations, algebraic system solved with Mathematica

» BBH simulation: Cactus toolkit, Carpet AMR driver, AEI-thorns now
included in Einstein Toolkit, AHFinderDirect
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Numerical and technical details

Algorithm for isometric embedding

v

Representation of surface functions / tensor components through Y™

Exact numerical integration up to Gaul-Legendre [,,,, = 2Ny — 1

v Vv

External Cartesian tensor basis for surface tensors and derivatives:
e.g. gij = 05 — 885, Daxy; = ("Dixs)! — Kizxs
Axillary operations for surface functions / tensors:

v

» Matrix inversion globally
» Anti-differentiation (solve ODE system with spherical boundary)
» Coordinate inversion n‘(2) — n%(n)

v

Parabolic relaxation flow for elliptic PDEs
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Linearised embedding equation

Instead of solving the full embedding equation linearise it around a
known embedding X¢, X? = X* + Y for a small shift Y and
Gij = qij + dij.

Linearise embedding equation

Gij = 0 X* X' = diy = 203Y*0;) X 0 + O((YT)?)

Weyl’s variable transformation Y — w, u; with w := —e¥;s*D;Y ;,
uj = s,(0;Y*) turns LEE into a second order elliptic PDE for w and
ODEs for u'.

D; [(IK )9 9;w] + Kw = T(d, Dd, K, DK)
;Y = % (w € kst + d';) + s'u;

The elliptic operator L]e] on L.h.s. of LEE has positive spectrum
(except [ = 1): solvable via parabolic relaxation flow @ = L[u] — T.
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Drifting of grid points during embedding flow

In general, the vector Y shifts grid points off the canonical grid which,
thus, has to be determined implicitly on the next surface X EI +1y

(2)/
/v, X(l) = h(l)n

Moreover, the target metric (thus ©g, o) has to be transported under

the mapping X/ (1+1) = =X (i[) + Y from one surface to the next.

Xk

3X
Gijlpr = 52 — quilg
J 8X{1 110X, 1y

(I+1)
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