Novel geometric methods for quasi-local mass using isometric embeddings and curvature invariants

Michael Jasiulek

Collaborator: Mikołaj Korzyński Albert-Einstein-Institut Potsdam

June 29, 2012

Introduction

- 2 Part 1: Quasi-local mass on MOTS by curvature invariants
- 3 Part 2: Finding isometric embeddings by embedding flow

4 Summary

Motivation

Diagnosing numerical relativistic two-body simulation

- ▶ Follow evolution of mass and spin during inspiral
- ▶ Measure initial and final masses
- Extract physical parameters for matching post-Newtonian and NumRel pieces to full gravitational waveforms

Measurement surface: 2-sphere bounding a region

Marginally-Outer-Trapped-Surface

$$\theta_{t+s} = ({}^{q}K_{ij} - {}^{\gamma}K_{ij})q^{ij} = 0$$

 $\theta_{t-s} < 0$
 $m^{2} = A \left[1 + (8\pi J/A)^{2}\right] / 16\pi$

Any 2-sphere S and $X_0: S \to \mathbf{R}^3$

$$q_{ij} = \partial_i X_0^k \partial_j X_0^l \delta_{kl}$$

$$m \sim \oint_S {}^q K^0 - Q dA \text{ with}$$

$$Q = {}^q K \text{ or } \sqrt{({}^q K)^2 - ({}^\gamma K_{ij} q^{ij})^2}$$

Brown-York-93 Or Liu-Yau-03

MOTS is instantaneously Kerr

Compute (m, J) by (A, L_{equator}) $m = L/(4\pi)$ $J^2 = (\frac{A}{8\pi})^2 (m^2 16\pi/A - 1)$

Smarr-73

Or extrema of scalar curvature (A, \mathcal{R}^{\min}) Lovelace-etal-08

Problematic:

- $ightharpoonup L_{\text{equator}}$ not well-defined in general
- ► Several extrema may exist
- ► Single points represent geometry of the surface

MOTS is instantaneously axial IH

Solve $\mathcal{L}_{\chi}q_{ij}\approx 0,\ J[\chi]\sim \int^{\gamma}K_{ij}\chi^{i}s^{j}dA$

- 1. Killing transport Dreyer-etal-03
- 2. Minimize functional Matzner-68 $F[\chi] := < \mathcal{L}_{\chi} q_{ij} \mathcal{L}_{\chi} q^{ij} > /||\chi||$ Similar functional Cook-Whiting-0
 Solve EuLag eg Beetle-08

- (1.) χ^i path-dependent if q_{ij} non-axial, no divergence free
- ▶ (2.) No unique functional
- ▶ (2.) Solve PDE num. involved
- (1.), (2.) Normalisation of χ^i ambiguous!

MOTS is instantaneously Kerr

Compute (m, J) by (A, L_{equator}) $m = L/(4\pi)$ $J^2 = (\frac{A}{8\pi})^2 (m^2 16\pi/A - 1)$

Smarr-73

ightharpoonup Or extrema of scalar curvature (A, \mathcal{R}^{\min}) Lovelace-etal-08

Problematic:

- $ightharpoonup L_{\text{equator}}$ not well-defined in general
- ▶ Several extrema may exist
- ► Single points represent geometry of the surface

MOTS is instantaneously axial IH

Solve $\mathcal{L}_{\chi}q_{ij}\approx 0,\ J[\chi]\sim \int^{\gamma}K_{ij}\chi^{i}s^{j}dx$

- 1. Killing transport Dreyer-etal-03
- 2. Minimize functional Matzner-68 $F[\chi] := <\mathcal{L}_{\chi}q_{ij}\mathcal{L}_{\chi}q^{ij} > /||\chi||$ Similar functional Cook-Whiting-Cook-Whiting-Cook-Fuller or Postals 02

- (1.) χ^i path-dependent if q_{ij} non-axial, no divergence free
- ▶ (2.) No unique functional
- ▶ (2.) Solve PDE num. involved
- (1.), (2.) Normalisation of χ^i ambiguous!

MOTS is instantaneously Kerr

- Compute (m, J) by (A, L_{equator}) $m = L/(4\pi)$ $J^2 = (\frac{A}{8\pi})^2 (m^2 16\pi/A - 1)$
 - Smarr-73
- ightharpoonup Or extrema of scalar curvature (A,\mathcal{R}^{\min}) Lovelace-etal-08

Problematic:

- $ightharpoonup L_{\text{equator}}$ not well-defined in general
- ▶ Several extrema may exist
- ► Single points represent geometry of the surface

MOTS is instantaneously axial IH

Solve $\mathcal{L}_{\chi}q_{ij} \approx 0$, $J[\chi] \sim \int {}^{\gamma}K_{ij}\chi^{i}s^{j}dA$

- 1. Killing transport Dreyer-etal-03
- 2. Minimize functional Matzner-68 $F[\chi] := <\mathcal{L}_{\chi}q_{ij}\mathcal{L}_{\chi}q^{ij} > /||\chi||$ Similar functional Cook-Whiting-0 Solve EuLag eq Beetle-08

- (1.) χ^i path-dependent if q_{ij} non-axial, no divergence free
- ▶ (2.) No unique functional
- ▶ (2.) Solve PDE num. involved
- (1.), (2.) Normalisation of χ^i ambiguous!

MOTS is instantaneously Kerr

Compute (m, J) by (A, L_{equator}) $m = L/(4\pi)$ $J^2 = (\frac{A}{8\pi})^2 (m^2 16\pi/A - 1)$

Smarr-73

• Or extrema of scalar curvature (A, \mathcal{R}^{\min}) Lovelace-etal-08

Problematic:

- $ightharpoonup L_{\text{equator}}$ not well-defined in general
- ► Several extrema may exist
- ► Single points represent geometry of the surface

MOTS is instantaneously axial IH

Solve $\mathcal{L}_{\chi}q_{ij}\approx 0$, $J[\chi]\sim \int {}^{\gamma}K_{ij}\chi^{i}s^{j}dA$

- Killing transport Dreyer-etal-03
- 2. Minimize functional Matzner-68 $F[\chi] := <\mathcal{L}_{\chi}q_{ij}\mathcal{L}_{\chi}q^{ij} > /||\chi||$ Similar functional Cook-Whiting-07 Solve EuLag eq Beetle-08

- (1.) χ^i path-dependent if q_{ij} non-axial, no divergence free
- ▶ (2.) No unique functional
- ▶ (2.) Solve PDE num. involved
- ▶ (1.), (2.) Normalisation of χ^i ambiguous!

Practical alternative: Compute geometric invariants μ_n

$$\mu_n\left({}^q\hat{\mathcal{R}}\right) := \left\langle \left(\left\langle {}^q\hat{\mathcal{R}}\right\rangle - {}^q\hat{\mathcal{R}}\right)^n\right\rangle, \quad \langle \bullet \rangle := \frac{1}{A}\oint_S \bullet \, dA, \, \langle {}^q\hat{\mathcal{R}} \rangle = 1$$

MOTS is instantaneously Kerr

Compute (m, J) by $(A, \mu_2({}^q\hat{\mathcal{R}}))$

$$m^2=\frac{A}{16\pi}(1+\hat{c}^2)$$

$$J = \frac{A}{8\pi}\hat{c}$$

$$\mu_2({}^q\hat{\mathcal{R}}) = \frac{-15 - 70\hat{c}^2 + \dots}{80(1 + \hat{c}^2)} + \frac{3(1 + \hat{c}^2)^4}{16} \frac{\operatorname{atan}(\hat{c})}{\hat{c}}$$

Advantage:

- ightharpoonup Accounting for all points on S
- ► Averaging lowers the total error
- ► Technically practical: only surface integrals

MOTS is instantaneously axial IH

Solve algebraic system relating $(\mu_n({}^q\hat{\mathcal{R}}), \mu_n(\operatorname{Im}\hat{\Psi}_2)) \leftrightarrow (\hat{L}_l, \hat{I}_l)$ axial multipole moments of ${}^q\hat{\mathcal{R}}, \operatorname{Im}\hat{\Psi}_2$ wrt Legendre P_l

$$J \sim A \cdot \hat{L}_1$$
 Ashtekar-etal-04

Advantage:

- ► No solution of PDE required (no additional num. errors)
- ► Unique multipolar approx. to perturbed axial metric

Applications to numerical simulations

Horizon of collapsing star: Saijo-11

Common horizon of 3D BBH simulation settling to Kerr: Jasiulek-09

Applications to numerical simulations

Horizon of collapsing star: Saijo-11

Common horizon of 3D BBH simulation settling to Kerr: Jasiulek-09

Weyl problem

Find an embedding X_0^i for 2-metric q_{AB} with ${}^q\mathcal{R} > 0$, $\det q_{AB} > 0$ such that $q_{AB} = \partial_A X_0^i \partial_B X_0^j \delta_{ij}$ (no "standard" num. method applicable)

Isometric embeddings provide

- ▶ Unique reference surface in ${f R}^3$ Nirenberg-53
- ▶ Quasi-local mass Brown-York-93 Liu-Yau-93
- ► Invariant coarse-graining of tensors in cosmology Korzynski-10

Weyl problem

Find an embedding X_0^i for 2-metric q_{AB} with ${}^q\mathcal{R} > 0$, $\det q_{AB} > 0$ such that $q_{AB} = \partial_A X_0^i \partial_B X_0^j \delta_{ij}$ (no "standard" num. method applicable)

Attempts to solve Weyl problem:

- ► Constructing polyhedra in R³
 Nollert-Herold-96
- Minim. functional Bondarescu-02 $F[X^i] := ||q_{AB} \tilde{q}(X^i)_{AB}||$

No solution guaranteed!

- ► Multiple non-regular polyhedra ∃
- ▶ Minimisation problematic
- Do not address coordinate issue $x^i \leftrightarrow \hat{x}^i$

Weyl problem

Find an embedding X_0^i for 2-metric q_{AB} with ${}^q\mathcal{R} > 0$, $\det q_{AB} > 0$ such that $q_{AB} = \partial_A X_0^i \partial_B X_0^j \delta_{ij}$ (no "standard" num. method applicable)

Attempts to solve Weyl problem:

- ► Constructing polyhedra in R³
 Nollert-Herold-96
- Minim. functional Bondarescu-02 $F[X^i] := ||q_{AB} \tilde{q}(X^i)_{AB}||$

No solution guaranteed!

⇒ No practical application in NumRel exists!

 $\hat{q}_{ij} \stackrel{!}{=} \frac{\partial x^k}{\partial \hat{x}^i} \frac{\partial x^l}{\partial \hat{x}^j} q_{kl}$

Jasiulek-Korzynski-12

- ► Guaranteed to find embedding: Nirenberg-53
- ▶ Decomposes Weyl problem into linear elliptic 1D PDEs, ODEs
- ▶ Allows for implementation with spectral methods: predictable and reasonable computational cost
- ► Compatible with common 3+1 codes (arbitrary coords)

Consists of 3 main steps

- 1. Ricci flow $q(\hat{x})_{ij} \to {}^{\odot}q(\hat{x})_{ij}$ to round metric \to conformal fac. σ
- 2. Determine canonical coords x^i such that ${}^{\odot}q(x)^{ij} = \delta^{ij} x^i x^j/r^2$
- 3. Iterate linearised embedding flow $X_{\odot}^{i} \xrightarrow{\sigma \to 0} X_{0}^{i}$

Consists of 3 main steps

- 1. Ricci flow $q(\hat{x})_{ij} \to {}^{\odot} q(\hat{x})_{ij}$ to round metric \to conformal fac. σ
- 2. Determine canonical coords x^i such that ${}^{\circ}q(x)^{ij} = \delta^{ij} x^i x^j / r^2$
- 3. Iterate linearised embedding flow $X_{\odot}^{i} \xrightarrow{\sigma \to 0} X_{0}^{i}$

1. Step: Ricci flow: $q(\hat{x})_{ij} \to {}^{\odot} q(\hat{x})_{ij}$

Consists of 3 main steps

- 1. Ricci flow $q(\hat{x})_{ij} \to {}^{\odot} q(\hat{x})_{ij}$ to round metric \to conformal fac. σ
- 2. Determine canonical coords x^i such that ${}^{\circ}q(x)^{ij} = \delta^{ij} x^i x^j / r^2$
- 3. Iterate linearised embedding flow $X_{\odot}^{i} \xrightarrow{\sigma \to 0} X_{0}^{i}$

2. Step: Determine canonical coords x^i , $n^i = x^i/r$

Consists of 3 main steps

- 1. Ricci flow $q(\hat{x})_{ij} \to {}^{\odot} q(\hat{x})_{ij}$ to round metric \to conformal fac. σ
- 2. Determine canonical coords x^i such that ${}^{\odot}q(x)^{ij} = \delta^{ij} x^i x^j / r^2$
- 3. Iterate linearised embedding flow $X_{\odot}^{i} \xrightarrow{\sigma \to 0} X_{0}^{i}$

3. Step: $X_{\odot}^i \xrightarrow{\sigma \to 0} \left(X_{(I+1)}^i = X_{(I)}^i + Y^i \right) \xrightarrow{\sigma \to 0} X_0^i$

Test case: Cigar-shaped test metric + random piece

Ricci flow diffuses curvature gradients

Test case: Cigar-shaped test metric + random piece

Embedding flow at t = 0.3 and t = 1 with round sphere (blue)

Convergence

Summary

New methods for quasi-local mass on MOTS based on curvature invariants

- ▶ Practical computation of Kerr (m, J) through surface integrals (A, μ_2)
- Practical computation of axial (m, J) through surface integrals $(A, \mu_n({}^q\hat{\mathcal{R}}), \mu_n(\operatorname{Im}\hat{\Psi}_2))$
- ▶ No solution of PDE required, no construction of KVF χ^i
- ► Applicable to perturbed axial 2-metrics

New algorithm to compute isometric embeddings

- ► Solution for admissible 2-metrics guaranteed
- ▶ Decomposition into sub-steps, solvable via standard numerical methods
- ▶ Allows for implementation through spectral methods
- ▶ Compatible with existing 3+1 codes in NumRel
- ▶ Applications: Brown-York / Liu-Yau masses, numerical cosmology
- ► Methods solving Ricci flow, [⊙]Δ-EV problem interesting for: MOTS eq, Jang's eq, Minkowski problem

Thank you!

Numerical and technical details

Quasi-local mass through μ_n Jasiulek-09

- Representation of surface functions through spherical harmonics $h = \sum_{lm}^{l_{\max}} \Phi[h]^{lm} \Phi^{lm}, \Phi^{lm} := (n^i \mathcal{N}_i^{lm})^l$
- Exact numerical integration up to $l_{\text{max}} = N_{\theta}/2 1$ Discroll-Healy-94
- External Cartesian tensor basis for surface tensors and derivatives: e.g. $q_{ij} = \delta_{ij} - s_i s_j$, ${}^qD_i\chi_j = ({}^\gamma D_i\chi_j)^{\parallel} - {}^qK_{ij}\chi_s$
- Scalar curvature through Gauß theorem: ${}^{q}\mathcal{R} = {}^{\gamma}\mathcal{R} - 2{}^{\gamma}R_{ij}s^{i}s^{j} + {}^{q}\mathcal{K}^{2} - {}^{q}K_{ij}{}^{q}K^{ij}$
- ▶ Implicit equations, algebraic system solved with Mathematica
- ▶ BBH simulation: Cactus toolkit, Carpet AMR driver, AEI-thorns now included in Einstein Toolkit, AHFinderDirect

Numerical and technical details

Algorithm for isometric embedding Jasiulek-Korzynski-12

- ightharpoonup Representation of surface functions / tensor components through Y^{lm}
- Exact numerical integration up to Gauß-Legendre $l_{\text{max}} = 2N_{\theta} 1$
- External Cartesian tensor basis for surface tensors and derivatives: e.g. $q_{ij} = \delta_{ij} - s_i s_j$, ${}^q D_i \chi_j = ({}^{\gamma} D_i \chi_j)^{\parallel} - {}^q K_{ij} \chi_s$
- ► Axillary operations for surface functions / tensors:
 - ► Matrix inversion globally
 - ► Anti-differentiation (solve ODE system with spherical boundary)
 - ▶ Coordinate inversion $n^i(\hat{n}) \to \hat{n}^i(n)$
- ▶ Parabolic relaxation flow for elliptic PDEs

Linearised embedding equation

Instead of solving the full embedding equation linearise it around a known embedding X^i , $\hat{X}^i = X^i + Y^i$ for a small shift Y^i and $\hat{q}_{ij} = q_{ij} + d_{ij}$.

Linearise embedding equation

$$\hat{q}_{ij} = \partial_i \hat{X}^k \partial_j \hat{X}^l \delta_{kl} \quad \rightarrow \quad d_{ij} = 2 \partial_{(i} Y^k \partial_{j)} X^l \delta_{kl} + \mathcal{O}((Y^i)^2)$$

Weyl's variable transformation $Y^i \to w, u_j$ with $w := -\epsilon^{ij}{}_k s^k D_i {}^{\parallel} Y_j$, $u_j := s_k(\partial_j Y^k)$ turns LEE into a second order elliptic PDE for w and ODEs for u^i .

Variable transformed LEE

$$\begin{split} ^{\gamma}\!D_i \left[(^{q}\!K^{(-1)})^{ij} \partial_j w \right] + {}^{q}\!\mathcal{K}w &= T(d, Dd, K, DK) \\ \partial_j Y^i &= \frac{1}{2} \left(w \, \epsilon^i{}_{jk} s^k + d^i{}_j \right) + s^i u_j \end{split}$$

The elliptic operator $\mathcal{L}[\bullet]$ on l.h.s. of LEE has positive spectrum (except l=1): solvable via parabolic relaxation flow $\dot{u}=\mathcal{L}[u]-T$.

Drifting of grid points during embedding flow

In general, the vector Y^i shifts grid points off the canonical grid which, thus, has to be determined implicitly on the next surface $X^i_{(I+1)}$.

Moreover, the target metric (thus ${}^{\odot}q, \sigma$) has to be transported under the mapping $X^{i}_{(I+1)} = X^{i}_{(I)} + Y^{i}$ from one surface to the next.

$$q_{ij}|_{P'} = \frac{\partial X_{(I)}^k}{\partial X_{(I+1)}^i} \frac{\partial X_{(I)}^l}{\partial X_{(I+1)}^j} q_{kl}|_Q$$