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Bonnor’s solution
A massive magnetic dipole: Bonnor’s solution

@ Using standard coordinates (t, r, 8, ¢) and geometrized units ¢ = G = 1 the line
element of Bonnor’s exact solution (Bonnor, 1966) describing the static
axisymmetric spacetime around massive magnetic dipole and corresponding
vector potential A, are given as follows

> _ P\? o, PPY? 2y, Y2Zsin®0 o
i = <7 4 + "z (dr° + Zd6%) + — 5" do
L2
A — (0’0707 2abr sin 0) 7
P
where P = r® —2ar —b?cos?6, Q= (r — a)® — (& + b?)cos? 4,
Y = rP—bcos?0, Z=r?—2ar— b

@ two independent parameters a, b

@ mass M = 2a, magnetic dipole moment 1. = 2ab, nonzero quadrupole mass
moment Q fixed by the values of parameters aand b: Q = §; — }M‘*
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Properties of Bonnor’s solution
Properties of Bonnor’s solution

It represents the magnetostatic limit of a more general exact solutions (Pach6n
et al., 2006; Manko et al. 2000) suggested to describe the exterior field of a
neutron star (adding spin, electric charge, current octupole moment and
quadrupole mass moment as extra free parameters).

Asymptotically flat; with a = 0 the spacetime is exactly flat with its spatial part
described by prolate spheroidal coordinates (r, 0, ¢).

With b = 0 the solution does not reduce to the Schwarzschild metric as it
keeps quadrupole mass moment (no spherical symmetry). Non-magnetized
Bonnor spacetime belongs to the class of solutions found by Darmois (1927).

The resulting field may be interpreted as a sum of two oppositely charged
extremal Reissner-Nordstrom black holes (with charge +a) placed on the
symmetry axis at +b .

The solution has relatively complicated singular behviourat P=0,Q=0,Z=0
and Y = 0 (analyzed by Ward, 1975; Emparan, 2000). However, we are
interested in the regular part of the spacetime only. Therefore we restrict
ourselves to Z > 0 which translates to the condition r > n, = a+ va® + b2. We
investigate the test particle dynamics above the horizon r, only.
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Equations of motion & effective potential
Equations of motion & effective potential

@ Employing the super-Hamiltonian H = %g’“’(w” — gAu) (7 — gAL) the equations of
motion are given as
d# _ 9H  dmy OH
T p - 5 N T T au
dx amy’  dA oxr

where A = 7/m is the affine parameter, 7 denotes the proper time, and p* is the standard
kinematical four-momentum for which the first equation reads p* = ©# — gAH*.

@ Two obvious constants of motion, the energy E = —7; and angular momentum
L = —m, which correspond to cyclic coordinates t, ¢. Hamiltonian is autonomous
H # H(X) — the motion generally occurs on the 3-dimensional hypersurface in the phase
space. If there is yet another independent integral of motion analogically to the Carter’s
fourth constant £ in the Kerr-Newman spacetime (Carter, 1968) the system is completely
integrable with no traces of deterministic chaos (motion on 2-dim hypersurface = curves
on the Poincaré surface of section). On the other hand, if there is no extra integral, the
system is non-integrable which means that regular and chaotic orbits coexist in its phase
space (presence of area-filling orbits on the surface of section).

@ We construct two-dimensional effective potential V.«(r,0; a, b, L) in order to locate
off-equatorial potential minima. We find that off-equatorial stable orbits are allowed in
this setup. We also locate off-equatorial orbits of neutral test particles (g = 0) which clearly
manifests profound difference between Bonnor’s exact solution and test field solutions
which only act on the ionised test particles as they do not affect the geometry of the
spacetime itself.
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Dynamics of test particles
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Off-equatorial and cross-equatorial trajectories of charged test particle (L = —2.356 a, ¢ = 5.581) in the Bonnor spacetime

(b =1 a). In the upper left panel we present a stereometric projection of two trajectories: the upper one with E = 0.8169 shows
ordered motion while with the higher energy the dynamics acquires partially chaotic properties (bottom trajectory with

E = 0.8182). We plot the poloidal (r, 8) projection of these trajectories along with several iso-contours of the effective potential
in the upper right panel. Increasing the energy to the value E = 0.819 the trajectory is allowed to cross the equatorial plane
freely and is now of the fully chaotic nature (bottom panels). All particles were launched at r(0) = 6, 6(0) = « /3, 2w /3,
respectively, with u”(0) = 0. Grey color marks r = r, surface in all plots.

O. Kopéacek (Astronomical Institute) Motion in Bonnor spacetime Prague, 29th June 2012 6/11



Dynamics of test particles Motion in equatorial potential lobes
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Comparison of dynamics in equatorial potential wells (6, = 0sec = 7/2). Common parameters of the trajectories in the left
panels are E = 0.95, L = 7.21 a, ¢ = 0 and b = 0. Both the surface of section as well as behaviour of rotation number
strongly suggests that system is integrable in this case. Middle panels show the situation for particles with £ = 0.94, L = 6.11 a,
q = 0 and b = 2.85 a. The chain of Birkhoff islands develops here. Although we know that there are some integrable system
with resonant islands of single multiplicity (Contopoulos, 2002) here its presence arouses suspicion of non-integrability since
none were present for b = 0. Right panels are plotted for E = 0.82, L = —2.73 a, ¢ = 4.72 and b = 1 a which leads to the
equal value of r,;, /i, as in the previous uncharged case. Here the KAM curves of quasiperiodic orbits are present as well as
several Birkhoff chains of islands corresponding to the resonances of intrinsic frequencies of the system. These are interwoven
with pronounced chaotic layers. Such picture is typical for considerably perturbed system far from integrability.
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Dynamics of test particles Motion in off-equatorial potential lobes
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Poincaré surfaces of section (6s.c = 7 /3) of electrically neutral particles in the Bonnor spacetime (b = 5.9771 a). Particles with
L = 3.6743 a are launched from the vicinity of the off-equatorial potential well (rp,j, = 10 &, O1yin = Osec = 7/3 and

Vinin = 0.8717) with various values of energy. Upper left panel shows the section for the level E = 0.8718 (small off-equatorial
lobe), in the upper right we set E = 0.873 (large off-equatorial lobe), E = 0.8739 produces cross-equatorial lobe which just
emerged from symmetric off-equatorial lobes (bottom left panel) while with E = 0.88 we obtain large cross-equatorial lobe which

almost opens.
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Dynamics of test particles Motion in off-equatorial potential lobes
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Poincaré surfaces of section (6s.c = 7/3) of electrically charged particles (g = 0.1259) in the Bonnor spacetime

(b = 4.53983 a). Particles with L = —3.5486 a are launched from the vicinity of the off-equatorial potential well (r,;, = 8 a,

Omin = Osec = w/3 and Vi, = 0.8475) with various values of energy. Upper left panel shows the section for the level

E = 0.8477 (small off-equatorial lobe), in the upper right we set E = 0.8495 (large off-equatorial lobe), E = 0.8496 produces
cross-equatorial lobe which just emerged from symmetric off-equatorial lobes (bottom left panel) while with E = 0.851 we obtain
large cross-equatorial lobe.
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Dynamics of test particles Motion in off-equatorial potential lobes
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RECURRENCE PLOTS

simple construction regardless
the dimension of the phase
space (unlike Poincaré
surfaces)

regular orbits lead to the
simple diagonal pattern while
the deterministic chaos
manifests itself by the complex
structure in the recurrence plot

may be quantified easily
(Recurrence Quantification
Analysis)

review on recurrence analysis:
Marwan (2006)
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Summary

@ From the numerical study presented above we conclude that geodesic motion in a
non-magnetized Bonnor’s spacetime (b = 0) is highly probably integrable. Claim of
integrability could be further supported by (non-conclusive) Painlevé test of integrability.
However, it can be fully proved only by finding extra integral of motion analytically.

@ Magnetic parameter b introduces non-integrable perturbation. Charge of the particle
acts as an extra perturbation which shifts magnetized system even farther from the
integrability.

@ We studied the effect of particle’s energy E on the degree of chaos found in the system
concluding that it acts as a trigger for chaotic motion. When the energy is gradually
increased the system undergoes continuous transition from ordered motion to chaotic
dynamics being almost fully ergodic on the given hypersurface. We illustrated such
transition by means of Poincaré surfaces of section and recurrence plots constructed from
the trajectory of particular ionised particle.

@ Unlike previously analyzed test field solutions (see Kopacek et al., 2010; Kovar et al.,
2010, 2008) which acted as a perturbation to the integrable system of Kerr or
Schwarzschild black holes here the off-equatorial orbits are found also for neutral
particles.
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