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The problem with Quantum Gravity

/ Quantum Gravity? J\T) ot

unification J Canonical Quantum General Relativity J

!

“ \
String Theory J Loop Quantum Gravity J | Wheeler-DeWitt approach J'

e observational guidance needed to distinguish the candidate theories

e problem: quantum-gravitational effects might only become dominant
in the Planck regime

h
mp = 56 ~ 1.22 x 10" GeV/c?
o effects are expected for: = black holes (Hawking radiation)
-> very early universe

(Cosmic Microwave Background)



Wheeler-DeWitt approach (Quantum Geometrodynamics)

canonical quantization of Hamiltonian formulation of General Relativity
3+1 decomposition by foliating spacetime (ADM formalism)

resulting equation: Wheeler-DeWitt equation

H W[hij(x), p(x)] = 0
VA

wave functional 3-metric matter field space of all 3-geometries

functional differential equation on “superspace” /

timeless (GR: dynamical time vs. QM: absolute time = QG: no time)
‘\

Born—-Oppenheimer approximation with respect to m]% x G}

- Hamilton-Jacobi equation of GR = recovery of Einstein eq.

=> functional Schrédinger eq. for matter field in curved spacetime; WKB time "

=> guantum-gravitational correction terms to Schréodinger eq. mgz

details: Kiefer and Singh, Phys. Rev. D 44, 1067 (1991).

= dominant QG contribution for the power spectrum of cosmol. perturbations?



Quantum-cosmological model

o simplest model: inflationary universe with perturbations of a scalar field

e background universe: flat Friedmann-Lemaitre universe with

scale factor a = exp(a) and inflaton field ¢
1

e slowroll: ¢? < |V(¢)| = inflaton potential: V(¢) = 5 m?¢? ~ const.

-> Wheeler-DeWitt equation in minisuperspace (o, ¢):
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Wheeler-DeWitt equation with perturbations

e add perturbations to the scalar field: ¢ — ¢(t) + do(x, )
e decompose into Fourier modes: §¢(x, t) Z Fo () e

= \WDW eq. with perturb.:
g P {7-[0 + Zﬂk} {fk}kzl) — 0

k=1
. 1 — 3w 82 2 Ao 2 b« 2
with H, = e 2I(ke +m~e )fk
2 of?
similar to: Halliwell and Hawking, Phys. Rev. D 31, 1777 (1985).
e product ansatz:

e wave function for each mode ¥ (a, f) = \Ifo(oz)\lfk(oz, fr)
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Semiclassical approximation

e Born-Oppenheimer approximation, WKB ansatz: Uy (c, f3,) = e ¥(@/¥)
» expansionof S(a, fr): S =mpSo+mpS;+mp>Sa+...

» insert WKB ansatz into WDW eq. and equate terms of equal power of mp

O

2
4 O(m%):] Hamilton—-Jacobi equation: {%} _Bap2

4 O(m%):J define w,(f))(oz,fk) — () el 1@ fr)

> introduce WKB time: => Schrodinger equation:
0 _ 3,05 0 . 0 ©) _ 94,
ot~ °  da da or U = T

) O(mPZ) J quantum-gravitationally corrected Schrodinger eq.:
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Solution to the uncorrected Schrodinger equation

e useGaussianansatz: ¢V (¢, fi) = NV (t) e~z U (O fi
m set of differential equations: (0 1 34 4 (0 0
) N () = = 5 e P NP () 27 (1)
2
O (1) =ie7 [~ (7 (1) + W(®)|
2,2 2
PN (1) DN m
m solution: Q7 (¢) = 2 22 (k+iHa) + O(H2>

e use this to calculate the power spectrum of the scalar field perturbations

» density contrast in slow-roll regime: 0 (t) =~ 5'05( ) — gb(t)vg"“(t)
0 0

» o0(t): classical quantity related to quantum-mechan. quantity fx(¢)

Fe Qk 2 — 2 [QF (1) +Qk (1)) 1 fr !
i (t) = (Ul fielow) = \/ / k= SR (0



Uncorrected power spectrum

e evaluate dx(t) at the time when mode reenters Hubble radius fenter

e relation between tqnter and the time the mode exits Hubble radius:

4 Vg 4 o1 (1
%‘: 5k (tenter) — g _2 5k (texit) — § . ( )
%D k=2mHa ¢ gb(t) Lexit
) \ at Hubble radius exit: k£ =27 Ha
\‘21(0b = ’O-I(CO) (t) X —3-
Qg)bo Lexit k§
+—— infiaton domnmed  log(a(t))
2 3 ,  H*
= power spectrum: A (k) := 4mk” [0 (fenter ) ~ const.
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Solution to the QG corrected Schrodinger equation

o _
0w gy () 0 0 <Hk> | 40

1ak_ k Zm% ;(;D vV L ll(?t % k

o first correction term dominant = unitarity-violating term negligible

o differential equation of fourth order = approximation necessary
-> modified Gaussian ansatz:

O = (MO0 + 2 MO0 ) e - 5 (470 + 7 90 0)) 2]

mp mp

» yields a set of differential equations

0 (1) ~ —2ie 2 Q) (1) (Qg)(t) 4V3(t) (@7 0)" =W (t)D

» boundary condition: Q,gl)(t) — 0 as t — oo

» can be solved by the method of variation of constants



Quantum-gravitational correction term

@é”(t)‘: éi (m[ng”(t)} - é)%e[ﬂ,(j)(t)D

1
2

e QGcorr.:

e correction can be incorporated into a correction term C}:

‘0(1) ‘CkHO'(O)

tex1t texit

o explicit form of Cj obtained by (humerical) integration:
43.56 H2\ 2/ 189.18 H?
Cr=1(1 5 1 5
k> mp k3 mg

= QG corrected power spectrum: A7, (k) = A% (k) Cf

» Taylor expansion:

123.83 H2 1 H\1°
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Quantum-gravitationally corrected power spectrum

o upper limit: H ~ 10** GeV CA"“
' = A%l)(k) ~ AQ(O)(k) 1 —1.76 x 107 klg | 0(1136_15) 2
/ without quantum-gravitational corrections

N S
_— ‘\/ with quantum-gravitational corrections

0.57 m» QG correction leads to scale dependence:
B suppression of power on the largest scales |
- - approximation breaks down "
I
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Measurability of the quantum-gravitational correction

o effectisonlysignificantif H approaches the Planck scale

C'k
e from observation of CMB (tensor-to-scalar ratio): H < 10'* GeV
5 1 0(10715)7°
2 ~ A2 _ —9 |
A(l)(k) ~ A(O)(k) 1 —1.76 x 10 75 16
- = unmeasurable due to cosmic variance
] BSU—
e currently no observation of QG effects in the CMB:
0.5__ rough estimate: C; > 0.95 for k ~ 1
: m limit: H <1.4%x 102 mp ~ 4 x 10" GeV
| k
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Summary

guantization of an inflationary universe with perturbations of a scalar field
guantum-gravitational correction to the power spectrum of these perturbations

» induces scale dependence, suppression of power on largest scales
» out of experimental reach due to cosmic variance

» weak limit on Hubble constant during inflation

m comparison with other approaches to Quantum Gravity (LQG: Bojowald et al."11)
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Appendix: Comparison with Loop Quantum Cosmology

e LQC predicts an T
enhancement on 1.3+ \\ ]
large scales R :
~ - \ ]
e derivation &2 1.2+ \ )
based on j_&\ j -
inverse volume <= 1L
corrections ~
1.0

e Figure: Primordial power spectrum for a certain model of loop quantum
cosmology (upper curve). The dotted line is the classical case, the solid line

is the experimental upper bound.

= M. Bojowald, G. Calcagni, and S. Tsujikawa, Phys. Rev. Lett. 107, 211302 (2011).



