Relativity and Gravitation – 100 Years after Einstein in Prague June 27, 2012

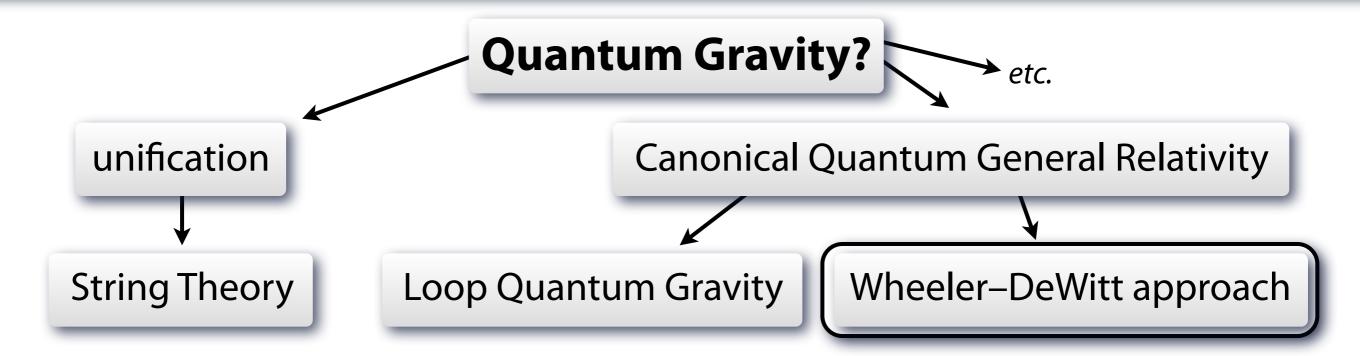
Can effects of Quantum Gravity be observed in the Cosmic Microwave Background?

- based on: Claus Kiefer and M. K., Phys. Rev. Lett. 108, 021301 (2012).
 - Int. J. Mod. Phys. D 21, 1241001 (2012), arXiv:1205.5161.
 (First Award in the 2012 Essay Contest of the Gravity Research Foundation)

Manuel Krämer

Institute for Theoretical Physics University of Cologne

The problem with Quantum Gravity



- observational guidance needed to distinguish the candidate theories
- problem: quantum-gravitational effects might only become dominant in the Planck regime

$$m_{\rm P} = \sqrt{\frac{\hbar c}{G}} \simeq 1.22 \times 10^{19} \,{\rm GeV}/c^2$$

- effects are expected for: → black holes (Hawking radiation)
 - very early universe

(Cosmic Microwave Background)

space of all 3-geometries

Wheeler-DeWitt approach (Quantum Geometrodynamics)

- canonical quantization of Hamiltonian formulation of General Relativity
- 3+1 decomposition by foliating spacetime (ADM formalism)
- resulting equation: Wheeler–DeWitt equation

$$\hat{\mathcal{H}}\Psi[h_{ij}(\mathbf{x}),\phi(\mathbf{x})]=0$$
 wave functional 3-metric matter field

- functional differential equation on "superspace"
- timeless (GR: dynamical time **vs.** QM: absolute time → QG: <u>no</u> time)
- Born-Oppenheimer approximation with respect to $m_{
 m P}^2 \propto G^{-1}$
 - → Hamilton–Jacobi equation of GR → recovery of Einstein eq.
 - → functional Schrödinger eq. for matter field in curved spacetime; WKB time 🖈
 - ightarrow quantum-gravitational correction terms to Schrödinger eq. $\propto m_{
 m P}^{-2}$

details: Kiefer and Singh, Phys. Rev. D 44, 1067 (1991).

→ dominant QG contribution for the power spectrum of cosmol. perturbations?

Quantum-cosmological model

- simplest model: inflationary universe with perturbations of a scalar field
- background universe: flat Friedmann–Lemaître universe with scale factor $a \equiv \exp(\alpha)$ and inflaton field ϕ
- slow roll: $\dot{\phi}^2 \ll |\mathcal{V}(\phi)| \rightarrow \text{inflaton potential: } \mathcal{V}(\phi) = \frac{1}{2} m^2 \phi^2 \approx \text{const.}$
- set: $\hbar=c=1$, define: $m_{\rm P}\equiv\sqrt{\frac{3\pi}{2G}}$, rescale: $\phi \to \frac{1}{\sqrt{2}\,\pi}\,\phi$
 - → Wheeler–DeWitt equation in minisuperspace (α, ϕ) :

$$\mathcal{H}_0 \Psi_0 = \frac{1}{2} e^{-3\alpha} \left[\frac{1}{m_{\rm P}^2} \frac{\partial^2}{\partial \alpha^2} - \frac{\partial^2}{\partial \phi^2} + e^{6\alpha} m^2 \phi^2 \right] \Psi_0(\alpha, \phi) = 0$$

• assume: $\frac{\partial^2 \Psi_0}{\partial \phi^2} \ll {
m e}^{6\alpha} \, m^2 \phi^2 \, \Psi_0$, substitute: $m\phi o m_{
m P} H$

$$\mathcal{H}_0 \Psi_0 = \frac{1}{2} e^{-3\alpha} \left| \frac{1}{m_{\rm P}^2} \frac{\partial^2}{\partial \alpha^2} + e^{6\alpha} m_{\rm P}^2 H^2 \right| \Psi_0(\alpha) = 0$$

Wheeler-DeWitt equation with perturbations

- add perturbations to the scalar field: $\phi \rightarrow \phi(t) + \delta \phi(\mathbf{x}, t)$
- decompose into Fourier modes: $\delta\phi(\mathbf{x},t) = \sum_k f_k(t) \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}}$

with
$$\mathcal{H}_k = \frac{1}{2} e^{-3\alpha} \left[-\frac{\partial^2}{\partial f_k^2} + \left(k^2 e^{4\alpha} + m^2 e^{6\alpha} \right) f_k^2 \right]$$

similar to: Halliwell and Hawking, Phys. Rev. D 31, 1777 (1985).

- product ansatz: $\Psi(\alpha, \{f_k\}_{k=1}^{\infty}) = \Psi_0(\alpha) \prod_{k=1}^{\infty} \widetilde{\Psi}_k(\alpha, f_k)$
- wave function for each mode $\Psi_k(\alpha, f_k) \equiv \Psi_0(\alpha) \widetilde{\Psi}_k(\alpha, f_k)$

$$\frac{1}{2} e^{-3\alpha} \left[\frac{1}{m_{\rm P}^2} \frac{\partial^2}{\partial \alpha^2} + e^{6\alpha} m_{\rm P}^2 H^2 - \frac{\partial^2}{\partial f_k^2} + W_k(\alpha) f_k^2 \right] \Psi_k(\alpha, f_k) = 0$$

$$\stackrel{\dagger}{=} k^2 e^{4\alpha} + m^2 e^{6\alpha}$$

Semiclassical approximation

- Born–Oppenheimer approximation, WKB ansatz: $\Psi_k(\alpha, f_k) = e^{i S(\alpha, f_k)}$
- expansion of $S(\alpha, f_k)$: $S = m_P^2 S_0 + m_P^0 S_1 + m_P^{-2} S_2 + \dots$
- insert WKB ansatz into WDW eq. and equate terms of equal power of $m_{
 m P}$
 - $lackbox{} \mathcal{O}(m_{
 m P}^2)$: Hamilton–Jacobi equation: $\left[\frac{\partial S_0}{\partial \alpha}\right]^2 {
 m e}^{6\alpha}H^2 = 0$
 - $lackbox{} \mathcal{O}(m_{\mathrm{P}}^{0})$: define $\psi_{k}^{(0)}(\alpha,f_{k}) \equiv \gamma(\alpha) \, \mathrm{e}^{\mathrm{i} \, S_{1}(\alpha,f_{k})}$
 - → introduce WKB time:
 - $\frac{\partial}{\partial t} \equiv -e^{-3\alpha} \frac{\partial S_0}{\partial \alpha} \frac{\partial}{\partial \alpha} \qquad i \frac{\partial}{\partial t} \psi_k^{(0)} = \mathcal{H}_k \psi_k^{(0)}$
- → Schrödinger equation:

$$i \frac{\partial}{\partial t} \psi_k^{(0)} = \mathcal{H}_k \psi_k^{(0)}$$

 $lackbox{} \mathcal{O}(m_{
m P}^{-2})$: quantum-gravitationally corrected Schrödinger eq.:

$$i\frac{\partial}{\partial t}\psi_k^{(1)} = \mathcal{H}_k\psi_k^{(1)} - \frac{e^{3\alpha}}{2m_P^2\psi_k^{(0)}} \left[\frac{\left(\mathcal{H}_k\right)^2}{V} \psi_k^{(0)} + i\frac{\partial}{\partial t} \left(\frac{\mathcal{H}_k}{V}\right) \psi_k^{(0)} \right] \psi_k^{(1)}$$

Solution to the <u>un</u>corrected Schrödinger equation

- use Gaussian ansatz: $\psi_k^{(0)}(t,f_k)=\mathcal{N}_k^{(0)}(t)\,\mathrm{e}^{-\frac{1}{2}\,\Omega_k^{(0)}(t)\,f_k^2}$
- \Rightarrow set of differential equations: $\dot{\mathcal{N}}_k^{(0)}(t) = -\frac{\mathrm{i}}{2}\,\mathrm{e}^{-3\alpha}\,\mathcal{N}_k^{(0)}(t)\,\Omega_k^{(0)}(t)$

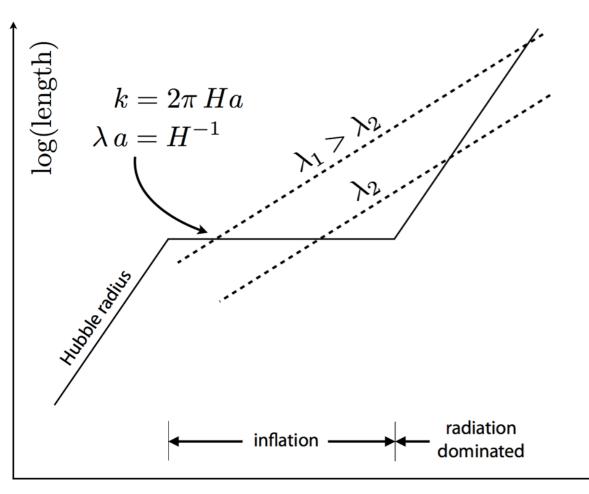
$$\dot{\Omega}_k^{(0)}(t) = i e^{-3\alpha} \left[-\left(\Omega_k^{(0)}(t)\right)^2 + W_k(t) \right]$$

- ightharpoonup solution: $\Omega_k^{(0)}(t) = \frac{k^2 a^2}{k^2 + H^2 a^2} (k + i H a) + \mathcal{O}\left(\frac{m^2}{H^2}\right)$
- use this to calculate the power spectrum of the scalar field perturbations
 - density contrast in slow-roll regime: $\delta_k(t) \approx \frac{\delta \rho_k(t)}{\mathcal{V}_0} = \frac{\phi(t) \, \dot{\sigma}_k(t)}{\mathcal{V}_0}$
 - $\sigma_k(t)$: classical quantity related to quantum-mechan. quantity $f_k(t)$

$$\sigma_k^2(t) := \left\langle \psi_k | f_k^2 | \psi_k \right\rangle = \sqrt{\frac{\Re \mathfrak{e} \Omega_k}{\pi}} \int_{-\infty}^{\infty} f_k^2 e^{-\frac{1}{2} [\Omega_k^*(t) + \Omega_k(t)] f_k^2} df_k = \frac{1}{2 \Re \mathfrak{e} \Omega_k(t)}$$

<u>Un</u>corrected power spectrum

- ullet evaluate $\delta_k(t)$ at the time when mode reenters Hubble radius $t_{
 m enter}$
- relation between $t_{\rm enter}$ and the time the mode exits Hubble radius:



$$\delta_k(t_{\text{enter}}) = \frac{4}{3} \frac{\mathcal{V}_0}{\dot{\phi}^2} \, \delta_k(t_{\text{exit}}) = \frac{4}{3} \left. \frac{\dot{\sigma}_k(t)}{\dot{\phi}(t)} \right|_{t_{\text{exit}}}$$

at Hubble radius exit: $k = 2\pi Ha$

$$\Rightarrow \left| \dot{\sigma}_k^{(0)}(t) \right|_{t_{\text{exit}}} \propto \frac{H^2}{k^{\frac{3}{2}}}$$

 $\xrightarrow{\log(a(t))}$

ightharpoonup power spectrum: $\Delta_{(0)}^2(k) := 4\pi k^3 \left| \delta_k(t_{\text{enter}}) \right|^2 \propto \frac{H^4}{\left| \dot{\phi}(t) \right|_{t_{\text{entit}}}^2} \approx \text{const.}$

Solution to the QG corrected Schrödinger equation

$$i\frac{\partial}{\partial t}\psi_k^{(1)} = \mathcal{H}_k\psi_k^{(1)} - \frac{e^{3\alpha}}{2m_P^2\psi_k^{(0)}} \left[\frac{\left(\mathcal{H}_k\right)^2}{V} \psi_k^{(0)} + i\frac{\partial}{\partial t} \left(\frac{\mathcal{H}_k}{V}\right) \psi_k^{(0)} \right] \psi_k^{(1)}$$

- first correction term dominant → unitarity-violating term negligible
- differential equation of fourth order -> approximation necessary
 - → modified Gaussian ansatz:

$$\psi_k^{(1)}(t, f_k) = \left(\mathcal{N}_k^{(0)}(t) + \frac{1}{m_{\rm P}^2} \mathcal{N}_k^{(1)}(t)\right) \exp\left[-\frac{1}{2} \left(\Omega_k^{(0)}(t) + \frac{1}{m_{\rm P}^2} \Omega_k^{(1)}(t)\right) f_k^2\right]$$

yields a set of differential equations

$$\dot{\Omega}_k^{(1)}(t) \approx -2 i e^{-3\alpha} \, \Omega_k^{(0)}(t) \left(\Omega_k^{(1)}(t) - \frac{3}{4V(t)} \left[\left(\Omega_k^{(0)}(t) \right)^2 - W_k(t) \right] \right)$$

- **b** boundary condition: $\Omega_k^{(1)}(t) \to 0$ as $t \to \infty$
- can be solved by the method of variation of constants

Quantum-gravitational correction term

$$\qquad \text{QG corr.:} \ \left| \dot{\sigma}_n^{(1)}(t) \right| = \left| \frac{1}{\sqrt{2}} \frac{\mathrm{d}}{\mathrm{d}t} \left[\left(\Re \mathfrak{e} \left[\Omega_k^{(0)}(t) \right] + \frac{1}{m_\mathrm{P}^2} \, \Re \mathfrak{e} \left[\Omega_k^{(1)}(t) \right] \right)^{-\frac{1}{2}} \right] \right|$$

• correction can be incorporated into a correction term C_k :

$$\left|\dot{\sigma}_k^{(1)}\right|_{t_{\text{exit}}} \simeq \left|C_k\right| \left|\dot{\sigma}_k^{(0)}\right|_{t_{\text{exit}}}$$

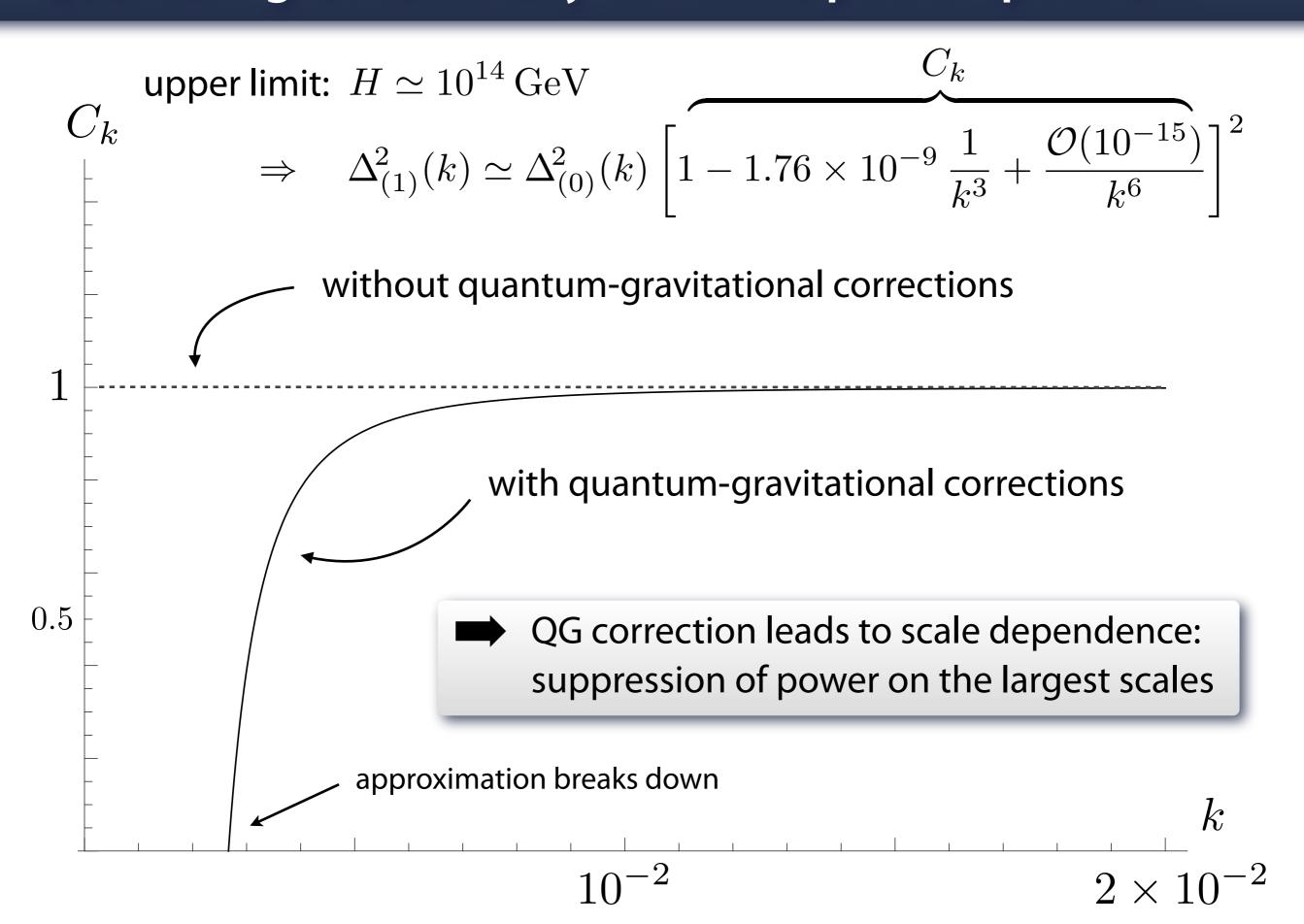
• explicit form of C_k obtained by (numerical) integration:

$$C_k = \left(1 - \frac{43.56}{k^3} \frac{H^2}{m_{\rm P}^2}\right)^{-\frac{3}{2}} \left(1 - \frac{189.18}{k^3} \frac{H^2}{m_{\rm P}^2}\right)$$

- ightharpoonup QG corrected power spectrum: $\Delta^2_{(1)}(k) = \Delta^2_{(0)}(k) \, C_k^2$
 - Taylor expansion:

$$\Delta_{(1)}^2(k) \simeq \Delta_{(0)}^2(k) \left[1 - \frac{123.83}{k^3} \frac{H^2}{m_P^2} + \frac{1}{k^6} \mathcal{O}\left(\frac{H^4}{m_P^4}\right) \right]^2$$

Quantum-gravitationally corrected power spectrum



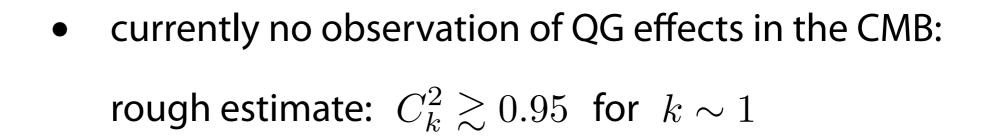
Measurability of the quantum-gravitational correction

- ullet effect is only significant if H approaches the Planck scale
- from observation of CMB (tensor-to-scalar ratio): $H \lesssim 10^{14} \, \mathrm{GeV}$

$$\Delta_{(1)}^2(k) \simeq \Delta_{(0)}^2(k) \left[1 - 1.76 \times 10^{-9} \frac{1}{k^3} + \frac{\mathcal{O}(10^{-15})}{k^6} \right]^2$$

→ unmeasurable due to cosmic variance

0.5



→ limit: $H \lesssim 1.4 \times 10^{-2} \, m_{\rm P} \sim 4 \times 10^{17} \, {\rm GeV}$

$$10^{-2}$$
 2×10^{-2}

Summary

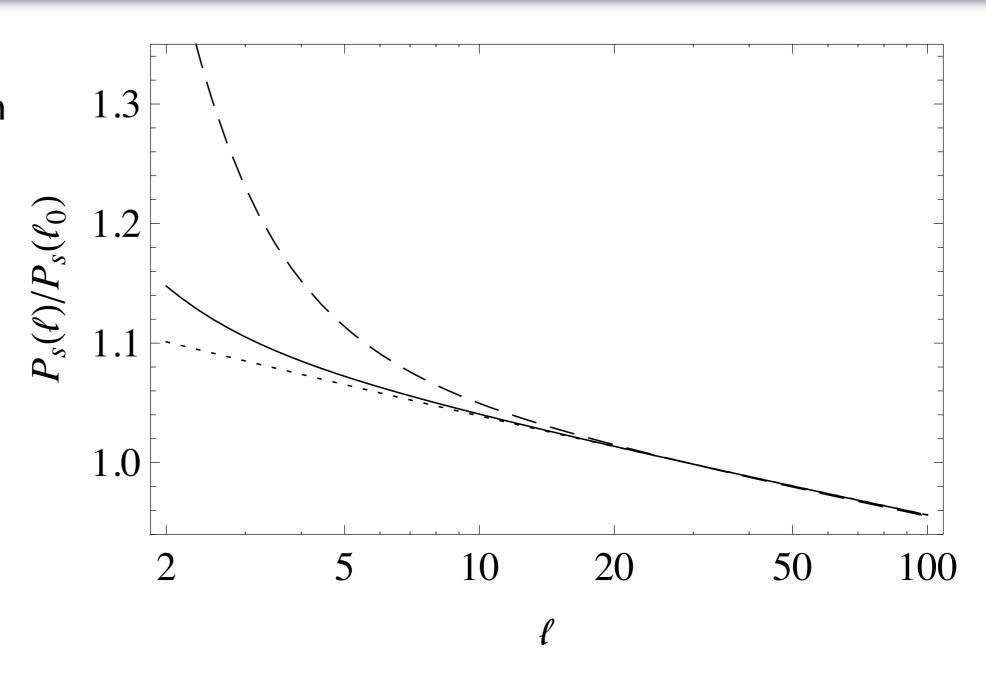
- quantization of an inflationary universe with perturbations of a scalar field
- quantum-gravitational correction to the power spectrum of these perturbations
 - induces scale dependence, suppression of power on largest scales
 - out of experimental reach due to cosmic variance
 - weak limit on Hubble constant during inflation
- ⇒ comparison with other approaches to Quantum Gravity (LQG: Bojowald et al. '11)

References

- C. Kiefer and M. K., Quantum Gravitational Contributions to the Cosmic Microwave Background Anisotropy Spectrum, Phys. Rev. Lett. 108, 021301 (2012).
- C. Kiefer and M. K., Can effects of quantum gravity be observed in the cosmic microwave background?, Int. J. Mod. Phys. D **21**, 1241001 (2012), arXiv:1205.5161.
- C. Kiefer and T. P. Singh, Quantum gravitational corrections to the functional Schrödinger equation, Phys. Rev. D **44**, 1067–1076 (1991).
- J. J. Halliwell and S. W. Hawking, *The Origin of Structure in the Universe*, Phys. Rev. D **31**, 1777–1791 (1985).

Appendix: Comparison with Loop Quantum Cosmology

- LQC predicts an enhancement on large scales
- derivation
 based on
 inverse volume
 corrections



- Figure: Primordial power spectrum for a certain model of loop quantum cosmology (upper curve). The dotted line is the classical case, the solid line is the experimental upper bound.
- → M. Bojowald, G. Calcagni, and S. Tsujikawa, Phys. Rev. Lett. **107**, 211302 (2011).