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Methods to compute GW templates for compact binaries
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Generalized first law of mechanics
[Friedman, Uryl & Shibata, PRD (2002)]

e Spacetimes with black holes + perfect fluid matter sources
e One-parameter family of solutions {gn3(\), u®(X), p(A), s(A)}
e Globally defined Killing vector field K% — conserved charge @

5Q = Z—éA +/ hA(dMy) + TA(AS) + v A(dC,)]
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Application to compact binaries on circular orbits

For circular orbits, the geometry has a helical Killing vector
K = (0¢)* +Q(9,)* (when r — +00)
e For asymptotically flat spacetimes [Friedman et al. (2002)]

0Q =0M—Q46J

In the exact theory, helically symmetric spacetimes are not
asymptotically flat [Gibbons & Stewart (1983); Klein (2004)]

Asymptotic flatness can be recovered if gravitational radiation
can be “turned off”, e.g.

o Conformal Flatness Condition
o Post-Newtonian theory
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Application to compact binaries on circular orbits

[Le Tiec, Blanchet & Whiting, PRD (2012)]

e Conservative dynamics only — no gravitational radiation
e Non-spinning compact objects modeled as point masses my:

2
Ta,B_Z a ﬁ5(X—YA)
= MAZA UpUp ——F——

A=1 V=&

e For two point masses on a circular orbit, the first law becomes

M —Q6) = 210m +206m| | o
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First integral associated with the variational law

[Le Tiec, Blanchet & Whiting, PRD (2012)]

Variational first law: 6M — Q6 =z m1 + 20 6my

Since {M, J, za} are all functions of {Q, ma}, we have

oM _0J (M —QJ)
879 = Qaiﬂ and Zp = 75,’”/4

After a few algebraic manipulations, we obtain

M —2QJ = myz1 + Moz \

Alternative derivations based on:
o Euler's theorem applied to the function M(JY/2, my, m,)
o The combination Mk — 2QJk of the Komar quantities
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Verification of the first law in PN theory

[Le Tiec, Blanchet & Whiting, PRD (2012)]

e The PN results for M(2, ma), J(2, ma) and za(S2, ma) are
expressed in terms of

m=m-+m, v=mm/m’>=p/m, and x=(mQ)*/3

e For instance, the binding energy E = M — m reads

E= L (2o 2 ) b M8
kX 4 12)% 15 VXX

e The first law is satisfied up to 3PN order included, as well as
by the 4PN-+5PN logarithmic terms:

oM _0J M —QJ)
879 = Qaiﬂ and ZA — 7(3,‘”/4
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Binding energy beyond the test-mass approximation
[Le Tiec, Barausse & Buonanno, PRL (2012)]

e In the “small” mass ratio limit v — O:
71 = V1 = 3x + v zgsp(x) + O(1?)

E 1—2x
R (e S | E O(1?
. (m )*” ase(x) +O)

e The self-force contribution zgsp(x) is known numerically
[Detweiler (2008); Sago, Barack & Detweiler (2008); Shah et al. (2011)]

e The first law provides a relationship E <+ z;, which implies

Eesr(x) = 5 zasr(x) — 3 26 () + F()

e A similar result holds for the angular momentum J/(mp)
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NR/EOB comparison for an equal mass binary

[Damour, Nagar, Pollney & Reisswig, PRL (2012)]
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NR/GSF comparison for an equal mass binary

[Le Tiec, Barausse &

Buonanno, PRL (2012)]
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Periastron advance in black hole binaries
[Le Tiec, Mroué et al., PRL (2011)]
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Why do the GSFv results perform so well?

In perturbation theory, one traditionally expands as

Nmax

GSFgq: ZA,,(mgQ) q" where g=my/my € 0,1]
n=0

However, the relations K(2; ma), E(2; ma), and J(£2; ma)
must be symmetric under exchange m; «— mp

Hence, a better-motivated expansion is

Nmax

GSFv: Z B,(mQ)v" where v=mimy/m? € [0,1/4]
n=0

e In a PN expansion, we have B, = O(1/c®") = nPN + - --

e Previously noticed for head-on collision [Detweiler & Smarr (1979)]
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Perturbation theory for com

parable-mass binaries
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Summary and prospects

The first law uncovers deep relations between local and global
physical quantites in binary black hole spacetimes

It holds up to very high orders in post-Newtonian theory

e Numerous applications to GW source modeling:
o E and J at leading order beyond the test-mass results
Exact frequency shift of the Schwarzschild ISCO

EOB potentials at linear order in v [cf. Barausse's talk]|

[¢]

o

[¢]

New high-order PN coefficients in E and J

Some directions for future research include:

o Extending the first law to spinning point particles

o Exploring further the use of perturbation theory to model
comparable-mass compact binaries
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Analogies with single and binary black holes

e }
‘ SM — O 6J = KA
8
K [Bardeen et al. (1973)]
2 ki 0A;
¢+ @ M —Q6J = Z
‘ [Friedman et al. (2002)]
A 022 2
g 5I\/I—Q(5J—;z,-(5m,-
m,* =
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Head-on collision of two non-spinning black holes
[Smarr (1979); Detweiler (1979)]

Numerical Relativity

my = mj

o O

Perturbation Theory

o VY

my << mo
o—>

Rescaling my — p, my — m
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Head-on collision for a mass ratio 1:100
[Sperhake, Cardoso et al., PRD (2011)]
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Head-on collision for a mass ratio 1:10

[Sperhake, Cardoso et al., PRD (2011)]
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Head-on collision for a mass ratio 1:4
[Sperhake, Cardoso et al., PRD (2011)]

0.06r ' ' — PPIimit
004- A | LM =10.57
0.021 — L/M = 21.61
[~ - 4
~ 0
j=) L
=.0.02- .
-0.04( .
| SR S
| ' ' ' "T— PP limit
----- LM =10.57
0.02 —- UM =21.61
s ]
3 0
-0.02
~ . | . | .
0.0455 0 50 100

100 vyears after Einstein in Prague — June 29, 2012



Periastron advance for a mass ratio 1:8
[Le Tiec, Mroué et al., PRL (2011)]
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Variation with respect to the mass ratio
[Le Tiec, Mroué et al., PRL (2011)]
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