The first law of binary black hole mechanics

Alexandre Le Tiec

University of Maryland

Based on collaborations with:

E. Barausse, L. Blanchet, A. Buonanno & B. F. Whiting

Generalized first law of mechanics

[Friedman, Uryū & Shibata, PRD (2002)]

- Spacetimes with black holes + perfect fluid matter sources
- One-parameter family of solutions $\{g_{\alpha\beta}(\lambda), u^{\alpha}(\lambda), \rho(\lambda), s(\lambda)\}$
- Globally defined Killing vector field $K^{\alpha} \rightarrow$ conserved charge Q

$$\delta Q = \sum_{i} \frac{\kappa_{i}}{8\pi} \, \delta A_{i} + \int_{\Sigma} \left[\, \bar{h} \, \Delta (\mathrm{d} M_{\mathrm{b}}) + \, \bar{T} \, \Delta (\mathrm{d} S) + v^{\alpha} \Delta (\mathrm{d} C_{\alpha}) \right]$$

Application to compact binaries on circular orbits

• For circular orbits, the geometry has a helical Killing vector

$$K^{\alpha} \to (\partial_t)^{\alpha} + \Omega(\partial_{\varphi})^{\alpha} \quad \text{(when } r \to +\infty\text{)}$$

• For asymptotically flat spacetimes [Friedman et al. (2002)]

$$\delta Q = \delta M - \Omega \delta J$$

- In the exact theory, helically symmetric spacetimes are not asymptotically flat [Gibbons & Stewart (1983); Klein (2004)]
- Asymptotic flatness can be recovered if gravitational radiation can be "turned off", e.g.
 - Conformal Flatness Condition
 - Post-Newtonian theory

Application to compact binaries on circular orbits

[Le Tiec, Blanchet & Whiting, PRD (2012)]

- ullet Conservative dynamics only o no gravitational radiation
- Non-spinning compact objects modeled as point masses m_A :

$$T^{\alpha\beta} = \sum_{A=1}^{2} m_A z_A u_A^{\alpha} u_A^{\beta} \frac{\delta(\mathbf{x} - \mathbf{y}_A)}{\sqrt{-g}}$$

• For two point masses on a circular orbit, the first law becomes

$$\delta M - \frac{\Omega}{\Omega} \delta J = z_1 \, \delta m_1 + z_2 \, \delta m_2$$

First integral associated with the variational law

[Le Tiec, Blanchet & Whiting, PRD (2012)]

- Variational first law: $\delta M \frac{\Omega}{\Omega} \delta J = z_1 \delta m_1 + z_2 \delta m_2$
- Since $\{M, J, z_A\}$ are all functions of $\{\Omega, m_A\}$, we have

$$\frac{\partial M}{\partial \Omega} = \Omega \frac{\partial J}{\partial \Omega}$$
 and $z_A = \frac{\partial (M - \Omega J)}{\partial m_A}$

After a few algebraic manipulations, we obtain

$$M-2\Omega J=m_1z_1+m_2z_2$$

- Alternative derivations based on:
 - Euler's theorem applied to the function $M(J^{1/2}, m_1, m_2)$
 - The combination $M_{\rm K}-2\Omega J_{\rm K}$ of the Komar quantities

Verification of the first law in PN theory

[Le Tiec, Blanchet & Whiting, PRD (2012)]

• The PN results for $M(\Omega, m_A)$, $J(\Omega, m_A)$ and $z_A(\Omega, m_A)$ are expressed in terms of

$$m \equiv m_1 + m_2$$
, $\nu \equiv m_1 m_2 / m^2 \equiv \mu / m$, and $x \equiv (m\Omega)^{2/3}$

• For instance, the binding energy $E \equiv M - m$ reads

$$E = -\frac{1}{2} \mu x \left\{ 1 + \left(-\frac{3}{4} - \frac{\nu}{12} \right) x + \dots + \frac{448}{15} \nu x^4 \ln x + \dots \right\}$$

• The first law is satisfied up to 3PN order included, as well as by the 4PN+5PN logarithmic terms:

$$\frac{\partial M}{\partial \Omega} = \Omega \frac{\partial J}{\partial \Omega}$$
 and $z_A = \frac{\partial (M - \Omega J)}{\partial m_A}$

Binding energy beyond the test-mass approximation

[Le Tiec, Barausse & Buonanno, PRL (2012)]

• In the "small" mass ratio limit $\nu \to 0$:

$$\begin{split} & \mathbf{z}_1 = \sqrt{1 - 3x} + \nu \, \mathbf{z}_{\mathsf{GSF}}(\mathbf{x}) + \mathcal{O}(\nu^2) \\ & \frac{E}{\mu} = \left(\frac{1 - 2x}{\sqrt{1 - 3x}} - 1\right) + \nu \, E_{\mathsf{GSF}}(\mathbf{x}) + \mathcal{O}(\nu^2) \end{split}$$

- The self-force contribution $z_{GSF}(x)$ is known numerically [Detweiler (2008); Sago, Barack & Detweiler (2008); Shah et al. (2011)]
- The first law provides a relationship $E \leftrightarrow z_1$, which implies

$$E_{GSF}(x) = \frac{1}{2} z_{GSF}(x) - \frac{x}{3} z'_{GSF}(x) + f(x)$$

• A similar result holds for the angular momentum $J/(m\mu)$

NR/EOB comparison for an equal mass binary

[Damour, Nagar, Pollney & Reisswig, PRL (2012)]

NR/GSF comparison for an equal mass binary

[Le Tiec, Barausse & Buonanno, PRL (2012)]

Periastron advance in black hole binaries

[Le Tiec, Mroué et al., PRL (2011)]

Why do the GSF ν results perform so well?

· In perturbation theory, one traditionally expands as

GSF
$$_q$$
: $\sum_{n=0}^{n_{\max}} A_n(m_2\Omega) q^n$ where $q \equiv m_1/m_2 \in [0,1]$

- However, the relations $K(\Omega; m_A)$, $E(\Omega; m_A)$, and $J(\Omega; m_A)$ must be symmetric under exchange $m_1 \longleftrightarrow m_2$
- · Hence, a better-motivated expansion is

GSF
$$\nu$$
: $\sum_{n=0}^{n_{max}} B_n(m\Omega) \nu^n$ where $\nu \equiv m_1 m_2/m^2 \in [0, 1/4]$

- In a PN expansion, we have $B_n = \mathcal{O}(1/c^{2n}) = nPN + \cdots$
- Previously noticed for head-on collision [Detweiler & Smarr (1979)]

Perturbation theory for comparable-mass binaries

Summary and prospects

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Numerous applications to GW source modeling:
 - E and J at leading order beyond the test-mass results
 - Exact frequency shift of the Schwarzschild ISCO
 - \circ EOB potentials at linear order in ν [cf. Barausse's talk]
 - New high-order PN coefficients in E and J
- Some directions for future research include:
 - Extending the first law to spinning point particles
 - Exploring further the use of perturbation theory to model comparable-mass compact binaries

EXTRA SLIDES

Analogies with single and binary black holes

$$\delta M - \Omega_{H} \delta J = \frac{\kappa \delta A}{8\pi}$$
[Bardeen *et al.* (1973)]

$$M - 2\Omega_{\mathsf{H}}J = \frac{\kappa A}{4\pi}$$
[Smarr (1973)]

$$\delta M - \frac{\Omega}{\Omega} \delta J = \sum_{i=1}^{2} \frac{\kappa_i \, \delta A_i}{8\pi} \qquad M - 2\Omega J = \sum_{i=1}^{2} \frac{\kappa_i A_i}{4\pi}$$
[Friedman *et al.* (2002)]

$$M - 2\Omega J = \sum_{i=1}^{2} \frac{\kappa_i A_i}{4\pi}$$

$$m_1$$
 C
 M

$$\delta M - \Omega \delta J = \sum_{i=1}^{2} z_i \, \delta m_i \qquad M - 2\Omega J = \sum_{i=1}^{2} z_i m_i$$

$$M-2\Omega J=\sum_{i=1}^2 z_i m_i$$

Head-on collision of two non-spinning black holes

[Smarr (1979); Detweiler (1979)]

Figure 3. The curvature ψ_4 -rM in the equatorial plane crossing the 2-sphere at r = 25M as a function of time. This is for the two black hole collision Run II.

Figure 4. The same quantity as in Figure 3 except from the perturbation calculation of a particle of mass u falling into a black hole of mass M. The abscissa is retarded time. The vertical scales are explained in the text. Only the quadrupole contribution is shown here.

Numerical Relativity

Perturbation Theory

Rescaling $m_1 \to \mu$, $m_2 \to m$

Head-on collision for a mass ratio 1:100

[Sperhake, Cardoso et al., PRD (2011)]

Head-on collision for a mass ratio 1:10

[Sperhake, Cardoso et al., PRD (2011)]

Head-on collision for a mass ratio 1:4

[Sperhake, Cardoso et al., PRD (2011)]

Periastron advance for a mass ratio 1:8

[Le Tiec, Mroué et al., PRL (2011)]

Variation with respect to the mass ratio

[Le Tiec, Mroué et al., PRL (2011)]

