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INTRODUCTION

It was just 100 years ago in Prague when
Einstein wrote the paper [1] in which he, for
the first time, expressed his understanding of
Mach’s Principle. Within his pre-General Rela-
tivity theory in which there was only one met-
ric function he considered a mass point inside a
shell accelerated “upwards” and found that the
mass-point is dragged along by the shell.

Many formulations and studies of Mach’s
Principle appeared during the last 100 years,
most of them were analyzed in the Tübingen
conference in 1993 which led to the remarkable
volume [2] containing lectures as well as valu-
able discussions. We studied Machian effects
in various contexts, both in asymptotically flat
spacetimes and within cosmological perturba-
tion theory – see, e.g., [3], and number of refer-
ences therein; later, cf. Schmid [4].

More recently, we investigated a subtle ques-
tion whether dragging of inertial frames should
be attributed also to gravitational waves. Af-
ter the discovery of binary pulsars losing en-
ergy and angular momentum as a consequence
of emitting gravitational radiation it would be
surprising if gravitational waves did not have
an influence on local inertial frames. However,
there are still doubts uttered about the status
of gravitational stress-energy as compared with
stress-energy tensor Tµν of matter in relation to
Machian ideas (see, e.g., [2], p. 83).

In the present work [5] we investigate the ef-
fects of rotating gravitational waves in a more
general, asymptotically flat setting, without as-
suming cylindrical symmetry. We again start out
from linearized theory and construct an ingo-
ing rotating pulse of radiation which later trans-
forms into an outgoing pulse. While in the cylin-
drical case our waves were characterized by just
one harmonic index m governing the number
of wave crests in ϕ, now the situation becomes
considerably richer involving both spherical har-
monic indices l and m.

Near the origin the first-order metric of our
waves behaves as rl, so the region around the
origin will be very nearly flat for l sufficiently
large. When, however, a local inertial frame is
introduced at the origin, we find that its axes ro-
tate with respect to the lines ϕ = const of the
global frame, i.e., with respect to stars at infinity.

Near the origin the congruence of the world-
lines ϕ = const twists and the observers attached
to these lines experience Euler acceleration pro-
portional to dtω0, where ω0 is the angular ve-
locity of the inertial frame near the origin. The
angular velocity ω0 enters the second-order odd-
parity dipole l = 1 perturbation of the metric,
g
(2)
tϕ = −ω0 r

2 sin2 θ. (The Coriolis and centrifu-
gal accelerations are higher order in the angular
velocity.) The situation thus indeed resembles
the interior of a collapsing slowly rotating shell -
see [6] where the vorticity of the lines ϕ = const
is given in covariant form. In [6] we also calcu-
lated how the fixed stars at infinity rotate with
respect to the inertial frame at the origin by con-
sidering photons emitted radially inwards from
the stars.

ROTATING SCALAR WAVES

For the scalar wave equation in spherical co-
ordinates r, θ, ϕ

−∂
2ψ

∂t2
+ ∆ψ = 0 (1)

we search for solutions in the form

ψlm = Re Ql(t, r)Ylm(θ, ϕ), (2)

where Ylm = Nm
l P

m
l (cos θ)eimϕ, l ≥ 0, |m| ≤ l

are scalar spherical harmonics, i.e. the radial part
satisfies

−Q̈l +Q′′l +
2

r
Q′l −

l(l + 1)

r2
Ql = 0. (3)

Inspired by the example of the Bonnor [7], Weber-
Wheeler [8] cylindrical pulse and by our recent

work [9], [10], in which time symmetric incoming
and outgoing rotating waves are smooth and fi-
nite everywhere at all time, we consider, in spher-
ical polar coordinates, the superposition

Ql = Bl

√
πa3

2r

∫ ∞
0

(aω)l+
1
2 e−ω(a+it)J

l+
1
2
(ωr) dω,

where the real amplitude Bl and the characteris-
tic width of the pulse a are constant. We find this
integral to yield

Ql(t, r) = Bl2
ll!

(r/a)l

{[(a+ it)2 + r2] /a2}l+1
. (4)

Such field is the superposition of rotating waves:
it is apparent that for each ω the wave contains

the factor

eimϕe−iωt = eim(ϕ− ω
m t) (5)

so that the wave pattern rotates with the rate
Ωp = ω/m. The rotation and the pulse charac-
ter of the wave as well as its regularity is easily
seen when ψlm is written explicitly in real terms:

ψlm ∼
Pml (cos θ) r̃l cos [mϕ− λ(t, r)]

[((1 + r̃2 − t̃2)2 + 4t̃2](l+1)/2
, (6)

where λ = (l + 1)tg−1
[
2t̃/(1 + r̃2 − t̃2)

]
, r̃ = r/a,

and t̃ = t/a. It is easy to see, that for high val-
ues of l the wave is concentrated near a shell with
radius r2 = a2 + t2.

t̃ = − 3
2 t̃ = −1 t̃ = − 1

2 t̃ = 0 t̃ = 1
2 t̃ = 1 t̃ = 3
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Figure 1. The snapshots of the rotating waves profiles in times t̃ = − 3
2 ...

3
2 for l = 17,m = 11. Waves are localized in the radial direction so that they

resemble a falling and rotating shell. Blue color corresponds to negative and yellow to positive values of ψlm. The wave rotates anticlockwise around the z
(vertical) axis. A careful observation reveals that the wave comes inwards in the form of a leading spiral, i.e., with the outside ahead of the inside; at t̃ = 0
the spiral structure has changed to a cartwheel but rotation keeps the wave away from the origin; at t̃ > 0 the spiral becomes trailing.

METRIC PERTURBATIONS

We consider first the linearized theory of
gravity in a flat background in spherical coordi-
nates decomposing the metric perturbations into
tensor harmonics [11], [12], [13]. For our purpose
it is sufficient to consider odd-parity waves. We
use the Regge-Wheeler gauge condition for odd-
parity perturbations ((i) = (1), (2) denotes the
first- and second-order perturbations)

h(i)µν =
∑
lm

[
−
√

2l(l + 1)

r
h
(i)
0lm(t, r)c0lmµν

+ i

√
2l(l + 1)

r
h
(i)
1lm(t, r)clmµν

]
(7)

where c0lm, clm are the odd-parity harmonics
with explicit forms of the non-zero components

c0lm tθ =
r√

2l(l + 1)

1

sin θ
∂ϕYlm, (8)

c0lm tϕ = − r√
2l(l + 1)

sin θ∂θYlm, (9)

clm rθ =
ir√

2l(l + 1)

1

sin θ
∂ϕYlm, (10)

clm rφ = − ir√
2l(l + 1)

sin θ∂θYlm, (11)

ROTATING GRAVITATIONAL WAVES

Field equation for perturbations can be put in
the form of Eq. (3) for the scalar field amplitude
Ql(t, r) related to the radial functions h(i)0lm(t, r)

and h(i)1lm(t, r) of the odd-parity metric perturba-
tions (7) through the substitution

h0 lm = − 1

(l − 1)(l + 2)
∂r(r

2Ql), (12)

h1 lm = − 1

(l − 1)(l + 2)
∂t(r

2Ql). (13)

These formulas are valid for l ≥ 2; in the linear
theory in vacuum the dipole odd-parity pertur-
bations (l = 1) can be transformed away by a
simple gauge transformation [12, 14].

SECOND ORDER PERTURBATIONS

In general the second-order metric perturba-
tions h(2) can be obtained by solving the equa-
tions

G(1)
µν [h(2)] = −G(2)

µν [h(1), h(1)], (14)

where h(i) represent quantities given in (7) with
all indices seen explicitly.

However, to determine the influence of grav-
itational waves on the rotation of local inertial
frames at the axis of symmetry we do not need
to solve (14) in general. Since terms varying like
sin 2mϕ or cos 2mϕ cannot cause any rotation of
the inertial frames on the axis we introduce the
average symbol <> and consider the equation

G(1)
µν [h(2)] = − < G(2)

µν [h(1), h(1)] > . (15)

To solve these equations we expand both
sides in tensor spherical harmonics. The l.h.s.
yields a hyperbolic set of equations for h(2)0 and
h
(2)
1 indicating non-instantaneous effects of the

first-order terms for general l.
In all our previous work on dragging due

to angular momentum of the sources (see, e.g.,
[3]), the effects were instantaneous at this low-
est order. The same situation arises here. Iner-
tial frames at the origin will be influenced pri-
marily by the dipole perturbations since all waves
behave as rl there. Now it is well known that
for l = 1 one can achieve h1 = 0 by an ap-
propriate gauge transformation [11], [14]. The
r.h.s. of (15) for axially symmetric component
< G

(2)
tϕ [h(1), h(1)] > appears as the only source

g(t, r) =
4π√

2l(l + 1)r

∫ π

0

< G
(2)
tϕ > ∂θYl0 dθ,

for the dipole second-order perturbations

h
(2)
0

′′
− 2

r2
h
(2)
0 = g(t, r). (16)

Its solution h(2)0 (t, r) reads

h
(2)
0 = − 1

3r

∫ r

0

g(t, r′) r′2dr′ − r2

3

∫ ∞
r

g(t, r′)
dr′

r′
.

FRAME DRAGGING

For dipole perturbations (l = 1,m = 0) near
the origin for which only h

(2)

0 10 6= 0, the general
form of the odd-parity metric perturbations (7)
yields the metric component gtϕ in the form

−g(2)tϕ =

√
3

4π
h
(2)
0 (t, r) sin2 θ = ω0 r

2 sin2 θ. (17)

The angular velocity of the rotation of an iner-
tial frame of a gyroscope near the origin is then
determined by behavior of solution of (16) near
origin:

ω0 =
1

4π

∫
IR3

G
(2)
tϕ [h(1), h(1)]

dx3

r3
. (18)

Figure 2. The dependence of normalized an-
gular velocity of the central inertial frame
ω0(l, 1; t)/ω0(l, 1; t = 0) on the parameter l = 2,
3, 10, 20, 30 (from inside to out). Also the func-
tion (1 + t̃2)−3/2 is shown as a dashed line to in-
dicate the limit for large l.

Although G
(2)
tϕ [h(1), h(1)] has a complicated

structure, we obtained the angular velocity ω0 in
the closed form

ω0(t) =
B̃2
l

2π

m (l + 1) (l + 2)

a (l + 3) l
× (19)[ (

Ul − Vlt̃
2
)
Ĩ2l+3(t̃) +

(
Ul + Vlt̃

2
)
I1l+3(t̃)

]
,

where

Ul =
(
2 l5 + 7 l4 + 4 l3 − 7 l2 + 24 l + 36

)
, (20)

Vl = 3
(
l4 + 2 l3 + 3 l2 + 8 l + 12

)
.

I1l+3 =
(1 + τ2)−l−4

23l+6(l + 2)!

(
(τ2 + 1)2

τ

d

dτ

)l+1

Π1 ,

(21)

Π1 =
(τ2 + 1)3

τ3
tg−1τ +

τ4 − 1

τ2
,

Ĩ2l+3 =
(1 + τ2)−l−4

23l+6(l + 2)!

(
(τ2 + 1)2

τ

d

dτ

)l
Π2 , (22)

Π2 = 3
(τ2 + 1)5

τ5
tg−1τ+

τ4−1

τ4
(3τ4+14τ2+3) .
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OBSERVING STARS

If we assume a telescope pointed towards the
star’s initial position at T → −∞, the quanti-
ties δθ and sin θδϕ proportional to star’s coordi-
nates on telescope’s photographic plate can be
described by a simple formula

δϕ

∆ϕ
+ i

δθ

∆θ
=

il eimϕ(
1 + iTa

)l+2
. (23)

We see that the same image is replicated for all
stars (Figure 3). Depending on the star’s posi-
tion the image is rotated by eimϕ and then scaled
by factors ∆θ ∼ mPml (cos θ)/sin θ in the latitu-
dinal and by ∆ϕ ∼ P ′ml (cos θ) in the longitudi-
nal direction. Surprisingly, the images are time-
symmetric with the maximal deflection occur-
ring at T = 0 despite the fact that the deflection
is calculated using retarded integrals.

Figure 3. Since light from distant stars is influ-
enced by the gravitational waves the observed
positions of the stars change. An observer at the
origin can record the apparent position of the
stars on the celestial sphere on a photographic
plate. When appropriately scaled and rotated,
the trajectories of all stars are the same. A star
starts at the origin of the plate (x = y = 0 in the
planes above) and moves along closed trajecto-
ries the structure of which becomes more com-
plicated with increasing l, trajectories for l = 3
(left) and l = 13 (right) are shown. At the mo-
ment of time symmetry, t̃ = 0, the image is lo-
cated at maximal value of x (with y = 0). To-
gether with the trajectory, positions at time t̃ =
0,±0.05,±0.1, ... are shown as circles.


