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The signature change from Lorentzian to Euclidean

ds2 = −dt2 + dx2 → ds2 = dτ2 + dx2

is usually performed by the so-called Wick rotation (t → −iτ).

This computational trick relates path integral approach with
statistical physics

e
i
}S → e−

1
}SE ,

improving convergence properties of some integrals.

In 1983, Hartle and Hawking suggested that Wick rotation
may gain physical meaning at the Planck epoch introducing
the so-called no-boundary proposal.

While such possibility is conceptually interesting, mechanism
behind the signature change remains mysterious.

What is the origin of the signature change? Can quantum
gravity lead to the signature change?
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The quantum gravity is usually related with some sort of
discreteness of space at the Planck scale.

In particular, in Loop Quantum Gravity (LQG), geometric
operators (area, volume) have discrete spectra.

Loop Quantum Cosmology (LQC) is a regular lattice model of
LQG.

Physical area of a loop Ar� = p̄µ̄2, where p̄ = a2 and a is a
scale factor. In general µ̄ ∝ p̄β, where −1/2 ≤ β ≤ 0. For the

so-called µ̄−scheme: µ̄ =
√

∆
p̄ , where ∆ = 2

√
3πγl2

Pl is the

area gap derived from LQG.
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In the framework of Ashtekar variables, Hamiltonian of
general relativity is a sum of three constraints:

0 ≈ HG[N,Na,N i ]

=
1

16πG

∫
Σ

d3x
(
NC + NCa + N iCi

)
= S [N] (scalar constraint)

+ D[Na] (diffeomorphism constraint)

+ G [N i ] (Gauss constraint).

The constraints (S → C1,D → C2,G → C3) form closed
algebra

{CI , CJ} = f K
IJ(Aj

b,E
a
i )CK .

The effects of discreteness of space can be studied at the
effective level by introducing appropriate corrections to the
classical constraints.
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In cosmology, Ashtekar variables can be decomposed for the
backround (here, flat FRW) and perturbation parts:

E = Ē + δE ,

A = Ā + δA.

Perturbations of Ashtekar variables can be related with the
standard metric perturbations: scalar modes (Φ, Ψ, E, B), vector
modes (Sa, Fa) and tensor modes (hab).
The scalar field ϕ and its canonically conjugated momenta π are
also subject of decomposition:

ϕ = ϕ̄+ δϕ,

π = π̄ + δπ.

The analysis is performed up to the second order in the
perturbative expansion:

CI = C(0)
I + C(1)

I + C(2)
I + ...
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The quantum (holonomy) corrections are introduced at the level of
total constraints Ctot = CG + CM :

Ctot → CQtot .

The procedure of introducing quantum corrections suffers from
ambiguities. In general, the algebra of modified constraints is not
closed:

{CQI , C
Q
J } = gK

IJ(Aj
b,E

a
i )CQK +AIJ .

Can we introduce quantum holonomy corrections in the
anomaly-free manner? (i.e. such that AIJ = 0)?

The answer turns out to be yes! There is a unique way of
modifying constraints such that the algebra is closed.

Additionally, the conditions of anomaly-freedom are fulfilled if and
only if β = −1/2, which corresponds to “new quantization
scheme”.
[T. Cailleteau, J. Mielczarek, A. Barrau, J. Grain, Class. Quantum
Grav. 29 (2012) 095010].
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Algebra of constraints:

{Dtot [N
a
1 ],Dtot [N

a
2 ]} = 0,

{Stot [N],Dtot [N
a]} = −Stot [δNa∂aδN],

{Stot [N1],Stot [N2]} = ΩDtot

[
N̄

p̄
∂a(δN2 − δN1)

]
.

The algebra is closed but deformed with respect to the classical
case due to presence of the factor

Ω = cos(2µ̄γk̄) = 1− 2
ρ

ρc
∈ [−1, 1] where ρc =

3

8πG ∆
∼ ρPl.

What is the interpretation? Classically, we have

{Stot [N1],Stot [N2]} = sD

[
N̄

p̄
∂a(δN2 − δN1)

]
,

where s = 1 corresponds to the Lorentzian signature and s = −1
to the Euclidean one.
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The effective algebra of constraints shows that space is
Euclidian for ρ > ρc/2, while Lorentzian geometry emerges for
ρ < ρc/2.

It is interesting to notice that this model naturally have
properties of the Hartle-Hawking no-boundary proposal.

The similar effect was observed also for spherically symmetric
models. [ M. Bojowald and G. M. Paily, Deformed General
Relativity and Effective Actions from Loop Quantum Gravity,
arXiv:1112.1899 [gr-qc]].

A lot of questions arise, e.g. :

Is the sign change only a perturbative effect?

What with the standard picture of the bouncing cosmology?

Is this a hint that the quantum algebra in LQG is also
modified? ([Ĥ, Ĥ] = ΩD̂ ?)

Is there relation to Hǒrava gravity? Flow from z = 0 to z = 1.
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Is the sign change only a perturbative effect?

What with the standard picture of the bouncing cosmology?

Is this a hint that the quantum algebra in LQG is also
modified? ([Ĥ, Ĥ] = ΩD̂ ?)

Is there relation to Hǒrava gravity? Flow from z = 0 to z = 1.
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Is there quantum tunneling through the Euclidean phase?

Suppression of spatial derivatives while {H,H} → 0. Possible
support for the BKL conjecture.
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Towards understanding the signature change

Can physics of metamaterials help us? Signature change is
observed e.g. in “wired” metamaterials as a result of negative
dielectric permittivity1.

1

c2

∂2ϕ

∂t2
=

1

ε1

∂2ϕ

∂z2
+

1

ε2

∂2ϕ

∂y 2
+

1

ε3

∂2ϕ

∂x2

ε1 = ε2 = ε3 ε1 < 0 and ε2 = ε3 > 0

Spontaneous symmetry breaking? Emergence of time coordinate
while passing to low temperatures?

1I. I. Smolyaninov, E. E. Narimanov, PRL 105, 067402 (2010)
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Equations of motion - Longitudinal gauge (E = 0 = B)

We find

φ̈+ 2

[
H−

(
¨̄ϕ
˙̄ϕ

+ ε

)]
φ̇+ 2

[
Ḣ − H

(
¨̄ϕ
˙̄ϕ

+ ε

)]
φ− c2

s∇2φ = 0,

with the quantum correction

ε =
1

2

Ω̇

Ω
= 3K[2]

(
ρ+ P

ρc − 2ρ

)
,

and the squared velocity c2
s = Ω.

The derived equation is the same
as this found by E. Wilson-Ewing2 in his approach. This non-trivial
equivalence of both approaches may suggests uniqueness in
defining theory of scalar perturbations with holonomy corrections
in anomaly-free manner.

2E. Wilson-Ewing, Class. Quant. Grav. 29 (2012) 085005
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Equations of motion - Gauge-invariant variables

Gauge-invariant variables (modified Bardeen’s potentials):

Φ = φ+
1

Ω
(Ḃ − Ë ) +

(
K[2]

Ω
− Ω̇

Ω

)
(B − Ė ),

Ψ = ψ − K[2]

Ω
(B − Ė ),

δϕGI = δϕ+
˙̄ϕ

Ω
(B − Ė ).

The gauge invariant variables are modified since the very structure
of spacetime is deformed.
The equations of motion for Φ and Ψ are the same as this found
for the longitudinal gauge. Moreover

δϕ̈GI+2K[2]δϕ̇GI−Ω∇2δϕGI+p̄V,ϕϕ(ϕ̄)δϕGI+2p̄V,ϕ(ϕ̄)Ψ−4 ˙̄ϕGI Ψ̇ = 0.
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δϕGI = δϕ+
˙̄ϕ

Ω
(B − Ė ).
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Equations of motion:

Scalar pertubations. One can derive modified Mukhanov
equation:

d2

dη2
v − Ω∇2v − z

′′

z
v = 0,

where z :=
√

p̄ ϕ̇
H . Spatial curvature R = v/z .

Vector perturbations. For the considered model with a scalar
field vector modes are pure gauge.

Tensor perturbations. Equation of motion for the gravitational
waves is the following:

d2

dη2
hab + 2

(
aH − 1

2Ω

dΩ

dη

)
d

dη
hab − Ω∇2hab = 0.
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Slow-roll inflation with holonomy corrections

Modified Friedmann equation:

H2 =
8π

3m2
Pl

ρ

(
1− ρ

ρc

)
.

Slow-roll parameters:

ε :=
m2

Pl

16π

(
V,ϕ
V

)2 1

(1− V /ρc)
,

η :=
m2

Pl

8π

(
V,ϕϕ

V

)
1

(1− V /ρc)
,

δ := η − ε
(

1− V

ρc

)
.
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Based on the derived equations of motion one can determine
inflationary scalar and tensor power spectra (ρ > ρc/2).
For this purpose we perform quantization of the v and hab fields.

Scalar power spectrum:

PS(k) = AS

(
k

aH

)nS−1

,

AS =
1

πε

(
H

mPl

)2(
1 + 2

V

ρc

)
,

nS = 1 + 2η − 6ε(1− V /ρc).

Tensor power spectrum:

PT(k) = AT

(
k

aH

)nT

,

AT =
16

π

(
H

mPl

)2(
1 + 3

V

ρc

)
,

nT = −2ε(1− 3V /ρc).

Consistency relation r := AT
AS
' 16ε

(
1 + V

ρc

)
.

Obtained quantum gravitational corrections are of the order
V
ρc
∼ 10−12.
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Further comments

The considerations apply to the modes with λ > lPl. The
issue of trans-Planckian modes cannot be addressed.

Euclidean phase is crucial in Causal Dynamical Triangulation.
The issue of conformal divergence of the classical Einstein
action. Is this related with our sign change?

At ρ = ρc/2 where {H,H} = 0 the ultralocal gravity (Isham -
1976) is recovered.

The general covariance is modified. What is the physical
meaning of this modification?

How to pass from the algebra of constraints to the Lagrangian
formulation? (Kuchǎr -1974; Bojowald, Paily - 2011)

D’Alambert operator changes smoothly its type from
hyperbolic to elliptic one: � = ∂2

∂t2 − Ω(t)∇2.
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Outlook

Better understanding of the transition between Lorentzian and
Euclidian domains.

Relation with the Hartle-Hawking proposal.

The modified Mukhanov equation can be directly applied to
compute power spectrum of the scalar perturbations with the
holonomy corrections.

The issue of initial conditions (matching conditions) for the
perturbations at ρ = ρc/2 (Ω = 0). Maybe scale-invariant
spectrum without inflation?

Comparison with the CMB data (TT, TE, EE and BB
spectra).
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Thank you!
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