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Motivation

For a hundred years Lorentzian manifolds 
serve as geometric background for physics. 

Equipped with the standard model of particle 
physics this led to the explanation of a huge 
amount of observations. However, on this 
basis  we have to conclude that 96% of the 
universe are unknown; called dark matter 
and dark energy [1]. Today most explanation 
attempts for this fact come from particle 
physics, but possibly a well controlled 
extension of the geometric background for 
physics  can shed light on the dark universe.

Here we present Finsler spacetimes which 
are capable to serve as generalized 
geometric background for physics providing: 

I. CAUSALITY 
    in a precise defined way,

II. OBSERVERS
    and their measurements,

III. FIELD THEORIES and
IV. GRAVITATIONAL DYNAMICS

    consistent with general relativity.
This invitation is based on our articles [3,4].

Finsler geometry

One of the fundamental measurements in 
physics is the measurement of time. 
Its theoretical description is given by 
Einstein’s clock postulate: An observer on 
worldline x[τ]  measures the time

The fundamental object is the metric g, 
which determines the metric geometry of 
spacetime.

The key idea for Finsler spacetimes is a 
m o r e g e n e r a l d e s c r i p t i o n o f t h e 
measurement of time which also realizes the 
weak equivalence principle: 

It is based on a one-homogeneous function 
F on the tangent bundle which determines 
the Finsler geometry of spacetime [2]. 

Finsler geometry equals metric geometry in 
the case F is given by the metric length 
measure used in the Einstein clock.
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I Causality

The description of Finsler spacetimes 
requires the tangent bundle TM of the 
spacetime manifold M. We consider it in 
manifold induced coordinates

and the corresponding basis of TTM

A Finsler spacetime (M,L,F) is a smooth 
manifold M equipped with a continuous 
function L: TM → R s. th.:

Our definition of Finsler spacetimes 
guarantees a causal structure in each 
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• L is smooth on TM \ {0},

• L is reversible |L(x, y)| = |L(x,�y)|,

• L is homogeneous of degree r:
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tangent space: Sx is the shell of unit timelike 
vectors which defines a cone of timelike 
directions with null boundary.

The geometry of Finsler spcaetime is based 
on the unique Cartan non-linear connection 
coefficients (“Christoffel symbols”) on TM

Theorem: Everywhere where L and F are 
both differentiable they encode the same 
geometry, i.e. N[L]=N[F2]!
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II Observers

The nonlinear connection coefficients split 
TTM and T*TM into horizontal and vertical 
space by

The horizontal space is identified with the 
(co-)tangent space along the manifold 
directions.

Observers are moving on worldlines x[τ] on 
M with trajectory (x[τ], ẋ[τ]) on TM where ẋ[τ] 
lies in the cone of timelike vectors. 

They are equipped with an horizontal 
orthonormal frame defining their time and 
space directions.
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Measurable quantities are components of 
horizontal tensors evaluated at the 
observers trajectory on TM.

Here the tangent direction of the observer 
singles out the time and space components 
of the tensor field as usual, but the field 
components also depend on the observers 
direction as function.

Transformations between such observers 
turn out to be a groupoid based on the 
Lorentz group.
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III Field Theories

The geometry of Finsler spacetime is built 
from tensors on TM; hence physical fields 
coupling to this geometry have to be of the 
same kind. 

The construction of Lagrange densities on 
TM requires the canonical Sasaki-type 
metric

To couple field theories to Finsler spacetime 
geometry we employ the fo l lowing 
procedure:

Choose an action for a p-form T(x) on (M,g)

use the Lagrangian for a zero homogenous 
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S[T, g] =
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p-form field T(x,y) on (TM,G), introduce 
Lagrange multipliers to restrict the p-form 
field to the horizontal space and finally 
integrate over the so called unit tangent 
bundle Σ={(x,y)∈TM | F(x,y)=1}

Variation with respect to the field yields the  
equations of motion, variation with respect 
to the Lagrange multiplier ensures the 
vanishing of all non horizontal components 
on shell and variation with respect to the L 
function gives the source term of the 
gravitational dynamics

This coupling principle ensures that in case 
the Finsler spacetime is metric the field 
theories and the gravitational dynamics are 
identical to those from general relativity.
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IV Gravity

The geodesic deviation equation on Finsler 
spacetimes gives rise to a tensor R causing 
relative gravitational acceleration

This non-linear curvature is built form the 
non-linear connection N through

Without further derivatives, or other tensors 
depending on L, the natural curvature scalar 
is defined as

The Finsler spacetime gravity action is
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Variation with respect to L leads to the 
Finsler spacetime gravity field equation 

It contains the curvature scalar, a measure 
of the departure from metric geometry S, 
and a Finsler version of the Levi-Civita 
derivative. 

In case the function L is the metric length 
measure the Finsler gravity equation 
becomes equivalent to Einstein’s equations
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Conclusion

We have construct a theory of gravity for 
spacetimes equipped with a general Finsler 
length measure. 

In case the Finsler length equals the metric 
length our theory becomes general relativity, 
hence all solutions of the Einstein equations 

are solutions to our Finsler gravity equation. 
The implications of Finsler spacetime 
gravity on the dark universe can be studied 
by spherical symmetric and cosmological 
solutions that go beyond metric geometry.

A perturbative first order Finsler solution 
around the Schwarzschi ld and the 
Friedmann-Robertson-Walker metric is work 
in progress.
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