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Algebraic classification of tensors in n dimensions - background

Let us work in the frame
m(0)=£, m(1) =M, M), ,5,k=2...n—1,
with two null vectors n, £
% =n"nqg =0, ng=1, a=0...n—-1
and n — 2 spacelike vectors

m(z), mc&)m(])azéw, i,j,k=2...n— 1.

metric

dab = 2€(anb> + 5z]mc(zZ)m[S])



Algebraic classification of the Weyl tensor - algebraic classes

Classification of the Weyl tensor [Coley, Milson, Pravda, P, CQG, 2004]

* sorting Weyl components according to their boost weight b

- under boost £ =\, A = A"1n, m® =m®: G=2xq (b)=1)

* according to (non)existence of Weyl aligned null directions (WANDSs)
(generalization of PNDs) and their multiplicity

* in 4D equivalent to the Petrov classification

C = (C)+2y +(C)+1) +(C) o) +(C)—1) +(C)(—2)
alg. t. G I I1/D ITI N
align. t.  (0,0) (1,0) (2,0)/(2,2) (3,0) (4,0)
— £ WAND
— £ multiple WAND
— algebraically special
GHP €2;; Wik Pijki, Pij ngk: ng

compts. v, 207, @ W



Algebraic classification of the Weyl tensor - algebraic classes

e Myers-Perry black hole (Kerr): type D in arbitrary dimension.

e Kerr-Schild spacetimes in arbitrary dimension

Jdab — Qnab — QHkClkbv

with geodetic k, - type II or more special, includes Myers-
Perry black holes and type N pp-waves.

e All VSI spacetimes (spacetimes with vanishing curvature in-
variants) have the Weyl and Ricci tensors of type III or more
special.



NP and GHP formalism in HD - spin coefficients, Ricci and Bianchi identities

e Ricci rotation coefficients L., N, and ]\Zhb are defined by

bosp = Lcdm((zc)m(()d) y  Nab — chm(c)m(d> ) (Z) _Mc (C)m(d)

e.g Loy = L11€aly + Liolany + L1t amb )+ Lm0, 4 Liom Py, + Lzyma)m(bj)
- ¢ is geodetic iff Lip = k; =0
- for geodetic £, affinely parametrized Lig = 0O
Li; = pij = o0ij + 00;5 + Aij,
Shear Oij = P(ij) — n—izpkkéij, o2 = 0;j0ji — E(a;b)éa;b — TL—EQ (Ea;a>2 ,
expansion = L ppe = 5%,
twist Aij = Plij]> w2 = —AijAﬂ = E[a;b]fa;b
e Ricciidentities - vype—va:cb = Rsapev® Projections on the frame (v = £,

n® and m?i)) - set of first order PDEs, e.g. Sachs eq. for type I (or more
special) with Rgg = 0 (e.g. vacuum) and frame parallely propagated

along a geodetic congruence Dp;; = —pikprj, D =AL"V,.
[NP: M.Ortaggio, V. Pravda, A.P., CQG,2007; GHP: M. Durkee, V.P., A.P., H.S. Reall,
CQG, 2010]

e Bianchi identities - projections of Ryy(ei:ey = Raved;e+ Rabde;e+ Ravec,a = 0
- set of first order PDEs. [NP: V.P., A.P., A. Coley, R. Milson, CQG, 2004; GHP]



Goldberg-Sachs theorem - 4D

Goldberg-Sachs theorem (in 4D):

In an Einstein spacetime (i.e. R, = (R/d)g,;), which is not
conformally flat, a null vector field is a repeated principal null
direction (of the Weyl tensor) if, and only if, it is geodesic and
shear-free.

Vog=0=WV; < k=0=o,ie.

Qi =0=v; <& K =0, p33=p22, P32 = —p23

1 a
Pz’j:b<_a 1)

Examples:

e a = 0: Kerr
e a = 0: Schwarzschild

e a =0 =0»: Kundt



Goldberg-Sachs theorem - HD *"geodetic” part

- in HD there exist vacuum spacetimes with non-geodetic multiple WANDs
[Pravda, Pravdova, Ortaggio, CQG, 2007]
However:

Theorem - “geodetic” part of the Goldberg-Sachs theorem
[Durkee, Reall, CQG, 2009] . A vacuum spacetime admitting a non-
geodetic multiple WAND always also admits another multiple
geodetic WAND.



Goldberg-Sachs theorem - HD ‘shearfree’” part - type N, III

Proposition:

An Einstein spacetime of

- type N

- type III non-twisting

type III in 5D

‘generic’ type III

have the optical matrix of the form

b a O
| —a b O
Pii =1 0 0 0

Note that shear of the only non-vanishing two-block in p;; is zero and p;;
satisfies optical constraint

PikPjk X Sij.

This in fact holds in much more general context.



Goldberg-Sachs theorem - HD ‘shearfree’” part - type II - optical constraint

e Algebraic Bianchi eqgs.:
A _
2®0p1Pi0 — 2Ptk + Pimjk| P = O
2®.1Pij T Pijpk; — Pjivjr + 2Pijpjk — Pigp + Pk + Pijripj; =0
symmetric and antisymmetric parts of the second one read
(QCDk:j - ‘Djk) Sij + (QCDz'j - (Djz') Sik — PFp 4+ PSip + DSy = 0(1)
P ipAji + PjiAg; + Piipik — Pripji + Phip + PAjg + Py Ay = 0(2)
e Differential Bianchi egs.:
bd;j = — (P + 2% + P&k ks
_ A
—bPijri = APgop — 2P kpiPs T 2P k|iPin T 2Pij[kimPmll]
e Ricci (Sachs) eq.: bpij = —pirPk;
e New algebraic eq. obtained by differentiating (1)

(2P — Dji) papji + (2Pij — Pji) pjipr — D3 p510j1 + Ppiapr + Pijrpisprs = O.



Goldberg-Sachs theorem - HD ‘shearfree’” part - 5D

GS theorem in 5D:

In a 5d algebraically special Einstein spacetime that is not con-
formally flat, there exists a geodesic multiple WAND £ and one
can choose the orthonormal basis vectors m'®) so that the optical
matrix of £ takes one of the forms

1l a 0
i) bl —a 1 0 :
0 0 1+a?
1 a O
i) bl —a 1 0 |,
O 0 O
1 a O
iti) bl —a —a? 0
0 O O

If the spacetime is type III or type N then the form must be ii).

* 6 parametres — 2 parameters



Goldberg-Sachs theorem - HD ‘“shearfree” part - 5D - Examples - i))

e Case i) (rank 3 optical matrix)
— non-twisting a = 0
* Robinson-Trautmann class - Schwarzschild-Tangherlini BH

— twisting a = 0
* Myers-Perry black hole

x all non-degenerate (i.e. detp # 0) Einstein Kerr-Schild metrics
with Minkowski or (A)dS background

x 5d Kaluza-Klein bubble obtained by analytic continuation of a singly

spinning Myers-Perry solution



Goldberg-Sachs theorem - HD *“shearfree” part - 5D - Examples ii))

e Case ii) (rank 2 optical matrix)

— non-twisting a = 0
* a direct or warped product of any 4d Einstein type II Robinson-

Trautmann metric (e.g. the Schwarzschild black string solution)

— twisting a = 0

* rich class of Ricci-flat solutions - product of a 4d Ricci-flat alge-
braically special solution with a flat 5th direction, e.g. Kerr black

string,

x examples with non-vanishing cosmological constant - warped prod-
uct of a 4d algebraically special Einstein spacetime with a 5th

direction



Goldberg-Sachs theorem - HD ‘“shearfree” part - 5D - Examples - iii)

e Case iii) (rank 1 optical matrix)

— non-twisting a =0

* non-twisting, expanding and shearing geodesic multiple WAND in
ng X 52

*x the expanding Kaluza-Klein bubble solution (analytically continued
5d Schwarzschild) (type D), ®;; = diag(—P, P, P)

— twisting a = 0
x genuine type II 7
x all type D spacetimes - known = algebraically special metrics ad-
mitting a non-geodesic multiple WANDSs - two subfamilies:
1) direct products dSz x S? and AdSsz x H?
2) analytical continuation of the 5d Schwarzschild solution (e.g. the
Kaluza-Klein bubble) - generalized to include a cosmological constant

A and planar or hyperbolic symmetry



Goldberg-Sachs theorem - HD ‘shearfree’” part - type II - optical constraint

* Cases i), ii), and iii) for a = 0 satisfy  optical constraint
PikPjk X Sij-

Optical constraint holds e.g. for

* Ricci-flat [Ortaggio, Pravda, P., CQG, 20009] and Einstein [Malek, Pravda, CQG,
2011] Kerr-Schild spacetimes (e.g. the Myers-Perry black hole),
* all asymptotically flat type II spacetimes admitting a non-
degenerate (det p # 0) geodesic multiple WAND,

* all Einstein spacetimes of type N,

* Einstein spacetimes of type III with additional assumptions.

OC: block-diagonal form

. : 1 1 —ab 1 1 —aby,
p—adlag(l,,l,m[&bl 1 ]’””Taﬁbg[aby 1 ],O,...,O).

Note that the symmetric part of each 2-block is proportional to
a 2-dimensional identity matrix, i.e. it is ‘“shear-free’.



Goldberg-Sachs theorem - Counterexample to the converse

Counterexample to the converse of Theorem:
5d type I; Ricci flat example: direct product of 4d type I Ricci-flat
cylindrical Newman-Tamburino solution

4
ds? = r2dw2+a¢2dy2——rdudx—2dudr—|—w_2 (c -+ In(r2x4)) du?, ¢ = const
x

with a flat dimension

lodx® = du

- geodesic PND of 4D spacetime,

optical matrix diag(b,0),

- (not multiple) WAND of 5D spacetime,

optical matrix diag(b,0,0), i.e. case (iii) of Theorem with a = 0.

Therefore the existence of a null geodesic congruence whose
optical matrix takes the canonical form iii) of Theorem 1 is not a
sufficient condition for the spacetime to be algebraically special.



Conclusions

e Goldberg-Sachs theorem can be partially generalized to higher
dimensions.

e Geodetic part: There exist algebraically special Einstein space-
times with non-geodetic multiple WANDs. One can how-
ever show ([Durkee, Reall, CQG 2009]) that these spacetimes also
always admit geodetic multiple WANDSs.

e ''Shearfree” part:

— “Qeneric’ type Il and IIIl and type N Weyl tensor = opti-
cal constraint holds in arbitrary dimension = p consists
of shearfree 2 x 2 blocks.

— To study all possible special cases one has to choose a
specific low dimension. For n = 5 one arrives to 3 pos-
sible forms of p. Several examples for all these three
classes are known. While for n = 4 GS theorem re-
duces the number of free parameters from 3 to 2, Iin
five dimensions the reduction is from 6 to 2.



