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Algebraic classification of tensors in n dimensions - background

Let us work in the frame

m(0) = `, m(1) = n, m(i), i, j, k = 2 . . . n− 1,

with two null vectors n, `

`a`a = nana = 0, `ana = 1, a = 0 . . . n− 1

and n− 2 spacelike vectors

m(i), ma
(i)m(j)a = δij, i, j, k = 2 . . . n− 1.

metric

gab = 2`(anb) + δijm
(i)
a m

(j)
b .



Algebraic classification of the Weyl tensor - algebraic classes

Classification of the Weyl tensor [Coley, Milson, Pravda, P, CQG, 2004]

* sorting Weyl components according to their boost weight b
- under boost ˆ̀= λ`, n̂ = λ−1n, m̂(i) = m(i): q̂ = λbq (b(`) = 1)
* according to (non)existence of Weyl aligned null directions (WANDs)
(generalization of PNDs) and their multiplicity

* in 4D equivalent to the Petrov classification

C = (C)(+2) +(C)(+1) +(C)(0) +(C)(−1) +(C)(−2)

alg. t. G I II/D III N

align. t. (0,0) (1,0) (2,0)/(2,2) (3,0) (4,0)

7−→ ` WAND
7−→ ` multiple WAND

7−→ algebraically special

GHP Ωij Ψijk Φijkl,Φij Ψ′
ijk Ω′

ij

compts. Ψi 2ΦA
ij,Φ Ψ′

i



Algebraic classification of the Weyl tensor - algebraic classes

• Myers-Perry black hole (Kerr): type D in arbitrary dimension.

• Kerr-Schild spacetimes in arbitrary dimension

gab = Ωηab − 2Hkakb,

with geodetic ka - type II or more special, includes Myers-

Perry black holes and type N pp-waves.

• All VSI spacetimes (spacetimes with vanishing curvature in-

variants) have the Weyl and Ricci tensors of type III or more

special.



NP and GHP formalism in HD - spin coefficients, Ricci and Bianchi identities

• Ricci rotation coefficients Lab, Nab and
i
Mab are defined by

`a;b = Lcdm
(c)
a m(d)

b , na;b = Ncdm
(c)
a m(d)

b , m(i)
a;b =

i
M cd m

(c)
a m(d)

b

e.g `a;b = L11`a`b+L10`anb+L1i`am
(i)
b +Li1m

(i)
a `b+Li0m

(i)
a nb+Lijm

(i)
a m

(j)
b

- ` is geodetic iff Li0 = κi = 0
- for geodetic `, affinely parametrized L10 = 0

Lij = ρij = σij + θδij +Aij,

shear σij ≡ ρ(ij) − 1
n−2

ρkkδij, σ
2 ≡ σijσji = `(a;b)`

a;b − 1
n−2

(
`a;a
)2
,

expansion θ ≡ 1
n−2

ρkk = 1
n−2

`a;a

twist Aij ≡ ρ[ij], ω
2 ≡ −AijAji = `[a;b]`

a;b

• Ricci identities - va;bc−va;cb = Rsabcv
s projections on the frame (va = `a,

na and ma
(i)) - set of first order PDEs, e.g. Sachs eq. for type I (or more

special) with R00 = 0 (e.g. vacuum) and frame parallely propagated

along a geodetic congruence Dρij = −ρikρkj, D ≡ `a∇a.

[NP: M.Ortaggio, V. Pravda, A.P., CQG,2007; GHP: M. Durkee, V.P., A.P., H.S. Reall,

CQG, 2010]

• Bianchi identities - projections of Rab{cd;e} = Rabcd;e+Rabde;c+Rabec;d = 0

- set of first order PDEs. [NP: V.P., A.P., A. Coley, R. Milson, CQG, 2004; GHP]



Goldberg-Sachs theorem - 4D

Goldberg-Sachs theorem (in 4D):

In an Einstein spacetime (i.e. Rab = (R/d)gab), which is not

conformally flat, a null vector field is a repeated principal null

direction (of the Weyl tensor) if, and only if, it is geodesic and

shear-free.

Ψ0 = 0 = Ψ1 ⇔ κ = 0 = σ, i.e.

Ωij = 0 = ψi ⇔ κi = 0, ρ33 = ρ22, ρ32 = −ρ23

ρij = b

(
1 a
−a 1

)

Examples:

• a 6= 0: Kerr

• a = 0: Schwarzschild

• a = 0 = b: Kundt



Goldberg-Sachs theorem - HD “geodetic” part

- in HD there exist vacuum spacetimes with non-geodetic multiple WANDs

[Pravda, Pravdová, Ortaggio, CQG, 2007]

However:

Theorem - “geodetic” part of the Goldberg-Sachs theorem

[Durkee, Reall, CQG, 2009] : A vacuum spacetime admitting a non-

geodetic multiple WAND always also admits another multiple

geodetic WAND.



Goldberg-Sachs theorem - HD “shearfree” part - type N, III

Proposition:

An Einstein spacetime of

- type N

- type III non-twisting

- type III in 5D

- ’generic’ type III

have the optical matrix of the form

ρij =


b a 0 . . .
−a b 0 . . .
0 0 0 . . .
... ... ... . . .

.

Note that shear of the only non-vanishing two-block in ρij is zero and ρij

satisfies optical constraint

ρikρjk ∝ Sij.

This in fact holds in much more general context.



Goldberg-Sachs theorem - HD “shearfree” part - type II - optical constraint

• Algebraic Bianchi eqs.:

2ΦA
[jk|ρi|l] − 2Φi[jρkl] + Φim[jk|ρm|l] = 0

2Φ[kj]ρij + Φijρkj −Φjiρjk + 2Φijρjk −Φikρ+ Φρik + Φijklρjl = 0

symmetric and antisymmetric parts of the second one read(
2Φkj −Φjk

)
Sij +

(
2Φij −Φji

)
Sjk −ΦS

ikρ+ ΦSik + ΦijklSjl = 0(1)

ΦjkAji + ΦjiAkj + Φijρjk −Φkjρji + ΦA
kiρ+ ΦAik + ΦijklAjl = 0(2)

• Differential Bianchi eqs.:

þΦij = −(Φik + 2ΦA
ik + Φδik)ρkj

−þΦijkl = 4ΦA
ijρ[kl] − 2Φ[k|iρj|l] + 2Φ[k|jρi|l] + 2Φij[k|mρm|l]

• Ricci (Sachs) eq.: þρij = −ρikρkj
• New algebraic eq. obtained by differentiating (1)(

2Φkj −Φjk

)
ρilρjl +(2Φij −Φji) ρjlρkl−ΦS

ikρjlρjl +Φρilρkl +Φijklρjsρls = 0.



Goldberg-Sachs theorem - HD “shearfree” part - 5D

GS theorem in 5D:

In a 5d algebraically special Einstein spacetime that is not con-

formally flat, there exists a geodesic multiple WAND ` and one

can choose the orthonormal basis vectors m(i) so that the optical

matrix of ` takes one of the forms

i) b

 1 a 0
−a 1 0
0 0 1 + a2

 ,
ii) b

 1 a 0
−a 1 0
0 0 0

 ,
iii) b

 1 a 0
−a −a2 0
0 0 0

 .
If the spacetime is type III or type N then the form must be ii).

* 6 parametres → 2 parameters



Goldberg-Sachs theorem - HD “shearfree” part - 5D - Examples - i))

• Case i) (rank 3 optical matrix)

– non-twisting a = 0

∗ Robinson-Trautmann class - Schwarzschild-Tangherlini BH

– twisting a 6= 0

∗ Myers-Perry black hole

∗ all non-degenerate (i.e. det ρ 6= 0) Einstein Kerr-Schild metrics
with Minkowski or (A)dS background

∗ 5d Kaluza-Klein bubble obtained by analytic continuation of a singly

spinning Myers-Perry solution



Goldberg-Sachs theorem - HD “shearfree” part - 5D - Examples ii))

• Case ii) (rank 2 optical matrix)

– non-twisting a = 0

∗ a direct or warped product of any 4d Einstein type II Robinson-

Trautmann metric (e.g. the Schwarzschild black string solution)

– twisting a 6= 0

∗ rich class of Ricci-flat solutions - product of a 4d Ricci-flat alge-
braically special solution with a flat 5th direction, e.g. Kerr black
string,

∗ examples with non-vanishing cosmological constant - warped prod-

uct of a 4d algebraically special Einstein spacetime with a 5th

direction



Goldberg-Sachs theorem - HD “shearfree” part - 5D - Examples - iii)

• Case iii) (rank 1 optical matrix)

– non-twisting a = 0

∗ non-twisting, expanding and shearing geodesic multiple WAND in
dS3 × S2

∗ the expanding Kaluza-Klein bubble solution (analytically continued

5d Schwarzschild) (type D), Φij = diag(−Φ,Φ,Φ)

– twisting a 6= 0

∗ genuine type II ?

∗ all type D spacetimes - known = algebraically special metrics ad-

mitting a non-geodesic multiple WANDs - two subfamilies:

1) direct products dS3 × S2 and AdS3 ×H2

2) analytical continuation of the 5d Schwarzschild solution (e.g. the

Kaluza-Klein bubble) - generalized to include a cosmological constant

Λ and planar or hyperbolic symmetry



Goldberg-Sachs theorem - HD “shearfree” part - type II - optical constraint

* Cases i), ii), and iii) for a = 0 satisfy optical constraint

ρikρjk ∝ Sij.

Optical constraint holds e.g. for

* Ricci-flat [Ortaggio, Pravda, P., CQG, 2009] and Einstein [Málek, Pravda, CQG,

2011] Kerr-Schild spacetimes (e.g. the Myers-Perry black hole),

* all asymptotically flat type II spacetimes admitting a non-

degenerate (detρ 6= 0) geodesic multiple WAND,

* all Einstein spacetimes of type N,

* Einstein spacetimes of type III with additional assumptions.

OC: block-diagonal form

ρ = α diag

(
1, . . . ,1,

1

1 + α2b21

[
1 −αb1
αb1 1

]
, . . . ,

1

1 + α2b2ν

[
1 −αbν
αbν 1

]
,0, . . . ,0

)
.

Note that the symmetric part of each 2-block is proportional to

a 2-dimensional identity matrix, i.e. it is “shear-free”.



Goldberg-Sachs theorem - Counterexample to the converse

Counterexample to the converse of Theorem:

5d type Ii Ricci flat example: direct product of 4d type I Ricci-flat

cylindrical Newman-Tamburino solution

ds2 = r2dx2+x2dy2−
4r

x
dudx−2dudr+x−2

(
c+ ln(r2x4)

)
du2, c = const

with a flat dimension

ladxa = du

- geodesic PND of 4D spacetime,

optical matrix diag(b,0),

- (not multiple) WAND of 5D spacetime,

optical matrix diag(b,0,0), i.e. case (iii) of Theorem with a = 0.

Therefore the existence of a null geodesic congruence whose

optical matrix takes the canonical form iii) of Theorem 1 is not a

sufficient condition for the spacetime to be algebraically special.



Conclusions

• Goldberg-Sachs theorem can be partially generalized to higher

dimensions.

• Geodetic part: There exist algebraically special Einstein space-

times with non-geodetic multiple WANDs. One can how-

ever show ([Durkee, Reall, CQG 2009]) that these spacetimes also

always admit geodetic multiple WANDs.

• “Shearfree” part:

– “Generic” type II and III and type N Weyl tensor ⇒ opti-

cal constraint holds in arbitrary dimension ⇒ ρ consists

of shearfree 2× 2 blocks.

– To study all possible special cases one has to choose a

specific low dimension. For n = 5 one arrives to 3 pos-

sible forms of ρ. Several examples for all these three

classes are known. While for n = 4 GS theorem re-

duces the number of free parameters from 3 to 2, in

five dimensions the reduction is from 6 to 2.


