
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 12

Go Back

Full Screen

Close

Quit

Superradiance or total reflection?

István Rácz
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The stability of the Kerr black hole

• The stability problem for the Kerr family of black hole solutions to the vacuum Einstein
equations is one of the most important unresolved issues in GR.

– The ultimate goal is to understand the dynamical stability of Kerr, as a family of
solutions, to the Cauchy problem for the system of nonlinear hyperbolic equations

Rab(g) = 0

• Essentially all work in the black hole case has been confined to the linearized setting

– The simplest problem: scalar perturbations on a fixed Kerr background

�gΦ = 0

– which is a poor man’s substitute for the more complicated problem of gravitational
perturbations, obtained by linearizing Rab(g) = 0 around a Kerr BH.

• A complete proof, covering the general subextremal case, of linear stability for scalar
perturbations was given recently by M. Dafermos & I. Rodnianski [arXiv:1010.5137].
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Superradiance

• The wave analog of the Penrose process: allows energy to be extracted from black holes.

– “...if scalar, electromagnetic or gravitational wave is incident upon a black hole,
part of the wave (the “transmitted wave”) will be absorbed by the black hole and
part of the wave (the “reflected wave”) will escape to infinity.”

• Superradiance, discovered at the early 70’s as a new phenomenon, may be related to
the names of Misner, Zel’dovich and Starobinskii

• By using the Teukolsky equation scalar, electromagnetic and gravitational perturbations
can be investigated within the same setting.

• The conventional arguments ending up with superradiance, including the ones based on
Teukolsky’s equation, all refer to properties of individual modes.

• As it was shown first by Bekenstein whenever superradiance happens it can be seen to
be completely consistent with the laws of BH thermodynamics.

• The aforementioned proof of linear stability by M. Dafermos & I. Rodnianski does not
include a detailed investigation of superradiance.

– Their main concern was to provide boundedness and decay statements for solutions
of �gΦ = 0 arising from arbitrary finite-energy initial data.
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Superradiance (mode analysis)

• It was realized first by Carter the d’Alembert operator separates for the t-Fourier trans-
formed field.

– the temporal Fourier transform, FΦ, of a solution to �gΦ = 0, in coordinates
t, r∗, ϑ, ϕ, may be decomposed as

FΦ(ω, r∗, ϑ, ϕ) = 1√
r2+a2

∑∞
`=0

∑`
m=−`R

m
`,ω(r∗)S

m
`,aω(ϑ, ϕ) , (1)

– ω is the frequency in the time translation direction

– Sm
`,aω denotes the oblate spheroidal harmonic functions with oblateness parameter

aω and with angular momentum quantum numbers `,m (Sm
`,aω eigenfunctions of a

self-adjoint op.)

– for the radial functions Rm
`,ω a one-dimensional Schrödinger equation of the form

d2Rm
`,ω

dr2∗
+
[(
ω − ma

r2+a2

)2
+ ∆ · V m

`,ω(r∗)
]
Rm
`,ω = 0 , (2)

with suitable real potentials V m
`,ω(r∗), can be derived from �gΦ = 0.
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Superradiance (mode analysis)

• The “physical solutions” to (2) are supposed to possess the asymptotic behavior

Rm
`,ω ∼

{
e−iωr∗ +R e+iωr∗ as r →∞
T e−i(ω−mΩH)r∗ as r → r+

(3)

– ΩH : the angular velocity of the BH w.r.t the asymptotically stationary observers

– with reflection and transmission coefficients, R and T , respectively.

• ! (3) presumes the existence of a transmitted wave submerging into the ergoregion.

• By evaluating the Wronskian of the corresponding fundamental solutions, “close” to
infinity and “close” to the horizon, it can be shown that

(ω −mΩH) T = (1−R)ω. (4)

• Whenever R > 1—or equivalently whenever the inequality

0 < ω < mΩH (5)

holds—positive energy is supposed to be acquired by the backscattered scalar mode due
to its interaction with the Kerr black hole.
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Superradiance (mode analysis)

• It is precisely in the frequency range 0 < ω < mΩH where for individual modes the sign
of the energy flux through the event horizon is negative.

• An analogous conclusion can be drown by looking at the “particle number current” in
the scalar and electromagnetic wave cases.

• The linear stability problem solved first by Kay and Wald taught us important lessons:

– statements at the level of individual modes typically do not imply state-
ments for the superposition of infinitely many modes

Numerical studies

• We studied the evolution of complex scalar fields on Kerr background

– GridRipper (3+1) is fully spectral in the angular directions while the dynamics
in the complementary 1+1 Lorentzian spacetime is followed by making use of a
fourth order finite differencing scheme with adaptive mesh refinement (AMR).
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The initial data

• To investigate the way an incident scalar wave acquires extra energy by submerging into
the ergoregion the solution, in the asymptotic region, was expected to posses the form

Φ(t, r∗, ϑ, ϕ̃) ≈ e−iω0 (r∗−r∗0+t)f(r∗ − r∗0 + t)Y m
` (ϑ, ϕ̃). (6)

where f : R→ C is a smooth function of compact support and ω0, r∗0 are real parameters.

• This, in a sufficiently small neighborhood of the initial data surface in the asymptotic
region, may be generated by choosing the initial data as

φ(r∗, ϑ, ϕ̃) = e−iω0 (r∗−r∗0)f(r∗ − r∗0)Y m
` (ϑ, ϕ̃) ,

φt(r∗, ϑ, ϕ̃) = −iω0 φ(r∗, ϑ, ϕ̃) + e−iω0 (r∗−r∗0) f ′(r∗ − r∗0)Y m
` (ϑ, ϕ̃) ,

where f ′ denotes the first derivative of f : R→ C.

• the Fourier transform, FΦ, of the approximate solution (6) reads as

FΦ(ω, r∗, ϑ, ϕ̃) ≈ e−iω (r∗−r∗0)Ff(ω − ω0)Y m
` (ϑ, ϕ̃), (7)

– ω is the temporal frequency

– Ff stands for the Fourier-transform of f , playing the role of a frequency profile.

• Assuming that Ff is sufficiently narrow the approximate solution (6) should be close
to a monochromatic wave packet.
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The chosen type of initial data is to be superradiant

• the frequency spectrum of a to be superradiant solution at r∗ = 14 located towards the
black hole with respect to the compact support of the initial data

M = 1, a = 0.99, ` = m = 2,
ω0 = 1

2mΩH , r∗0 = 31.823
(!pure quadrupole type initial data!)
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The time dependence of the radial energy and angular
momentum distributions & and the power spectrum

the energy and angular momen-
tum, E and L, on a t = const time
level surface can be given as

E =
∫
t=const

E dr∗

and

L =
∫
t=const

L dr∗
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The time dependence of the radial energy and angular
momentum distributions & and the power spectrum (2)

For an almost to be
superradiant solution
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The accuracy
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• Time dependence of the relative variation of the energy and angular momentum balances

δE =
[E(t)+Erad(t)]−E0

E0
and δL =

[L(t)+Lrad(t)]−L0

L0

– E0 and L0 are the initial energy and angular momentum, respectively.
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Summary

• The evolution of massless scalar field on Kerr background, arising from initial data with
compact support in the distant region, was considered.

• The incident wave packet was tuned to maximize the effect of superradiance.

• For perfectly tuned data instead of the occurrence of energy extraction from black hole
the inward sent radiation fail to reach the ergoregion rather it suffers total reflection.

• By examining the energy to angular momentum content of the to be superradiant wave
packets it is clear that far too much angular momentum is stored by them, E < ΩH L,
which does not allow them to reach the horizon of the black hole.

• This new phenomenon may be considered as the field theoretical analog of the one in
Wald’s thought experiments demonstrating, in the early 70’, that a Kerr black hole does
not capture a particle that would cause a violation of the relation m2 ≥ a2 + e2.

• Our findings do also have implications related to the concept of BH bomb. If superra-
diance does not occur the solutions to the massive Klein-Gordon equation

�gΦ = µ2Φ

on Kerr background, as opposed to some fashionable speculations, should remain
bounded and, in turn, our results support the stability of Kerr black holes.


