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Abstract
In this work we analyze the effects of an external magnetic field on charged par-

ticles following equatorial circular orbits around a Kerr spacetime, both in the black
hole and the naked singularity cases. Understanding these phenomena is of great im-
portance because equatorial circular orbits are a key ingredient of (simple) accretion
disc models. In particular we study two important magnetic field configurations:
a) a uniform magnetic field aligned with the angular momentumand b) a dipolar
magnetic field. We center our attention on the effect of theseexternal fields on the
marginally bound and marginally stable equatorial circular orbits because they are
potentially observable quantities that could be useful to determine the nature of the
central object. Using a perturbative approach we are able togive analytic results and
compare (in the black hole case) with previous results.

1 Introduction

Penrose’s Cosmic Censorship Conjecture (CCC) [1] is among the most im-
portant open questions of Einstein’s General Theory of Relativity, and al-
though great efforts have been made over the past 40 years there is still no
definitive answer to whether it is valid or not. In order to shed some light
into this question and give indications to whether CCC is to be true or not
but not conclusive anwers, many different lines of thought were used.

Even though the great efforts made, there are no conclusive observational
evidence of the actual nature of the ultra compact objects, for instance up to
date no direct evidence of an event horizon has been found. For this reason
finding observable features that could help us to distinguish between black
holes and naked singularities should be considered relevant. Any observa-
tion in this direction would enhance the current black hole paradigm.

A common feature observed in a wide variety of astrophysicalenvior-
ments, particulary near compact objects, is the formation of accretion discs.

The study of the differences between accretion discs formedaround black
holes and naked singularities is important because it may give us a different
observational tool to determine the central object’s nature. Circular equa-
torial orbits are a key ingredient to study more realistic disc models. In
this direction the ecuatorial circular orbits in the field ofa rotating naked
singularity were studied in detail in [2].

The (main) astrophysical relevance of studying the accretion discs formed
around ultracompact objects is that they are belived to be engines of the
yet not completely understood astronomical phenomena of relativistic jet
generation. This kind of extremely energetic phenomena appear on a wide
range of object’s scale: form AGN’s (quasars) to stellar mass black holes
or neutron stars (microquasars).

As a possible explanation of the jet formation a disc-jet coupling has been
proposed by several authors [3], works trying to explain this unsolved ques-
tion are to be considered of great importance. Two of the mostaccepted
mechanisms that can explain the energetics involved in a relativistic jet
(whose matter can have Lorentz factor grater that 100) are based on ro-
tational energy extracted from the central rotating black hole to form the
jet: the Blandford-Znajek process [4] and Penrose’s mechanism [5, 6].

Asociated with accretion discs and compact objects there are usually ob-
served phenomena related with the precense of magnetic fields. The inves-
tigation of the differences between the effects of simple magnetic field con-
figurations on the orbits formed around a black hole and nakedsingularity
could give us mechanisms to distinguish the nature of the central compact
object. The effects of magnetic fields on accretion discs around a rotating
black hole where studied and the changes in the innermost stable orbit and
in the marginally bound orbits is analized in [7], [8]. As we are only able
to observe the effect of the presence of a black hole on particles, changes
in these particular radii may give observable quantities that could allow us
to distinguish between different available theoretical models for compact
objects.

In this work were we are going to present some of the results of[9] in
which we study the change in the position of the inner edge of an accre-
tion disc in Kerr spacetime generalizing previous results by allowing the
rotation parametera to adopt values larger that 1. We present an analytical
study using a perturbative (in the parameterλ that measures the coupling
between matter and magnetic field strenght) approach that allow us not only
to test previous numerical results but also to reinforce them. This approach
to the problem limit our study to small values ofλ. As we will see latter,
this restriction is not strong as we are interested in studying only the plasma
case which is a useful way to model a disc.

2 Stationary axisymmetric electromagnetic
fields in Kerr spacetime

Before introducing the electromagnetic field configurations we are going to
work with, we present some basic aspects of Kerr’s spacetime.

Using Boyer-Lindquist coordinates and metric signature + -- -, the Kerr
solution [10] to the vacuum Einstein field equations is expresed as:

ds2 = ∆−a2 sin2 θ
Σ dt2+2a sin2 θr

2+a2−∆
Σ dtdφ−Σ

∆dr
2
−Σdθ2 −

(

(r2+a2)2−∆a2 sin2 θ
Σ

)

sin2 θdφ2,

where:
∆ = r2 − 2Mr + a2 and Σ = r2 + a2 cos2 θ.

2.1 Uniform Magnetic Field

The first exact solution for an external electromagnetic field in a Kerr back-
ground was found by Wald [11]. In this paper he derived the electromag-
netic field of a rotating black hole placed in a magnetic field originally
uniform and aligned with the rotation axis in order to preserve the Killing
vector fields of the unperturbed background.

Latter Petterson [12] derived explicit expresions for general stationary ax-
isymmetric electromagnetic fields in a Kerr background. Theexplicit solu-
tion given in [12] for the4-vector portential can be expresed as:

Aµ=(At,0,0,Aφ),

where:

Aφ=
B sin2 θ

2Σ [(r2+a2)2−∆a2 sin2 θ−4Ma2r]

whereB is the magnetic field strenght.
The divergent behavior of the magnetic vector potential forlarge values

of the radial coordinater was expected from a physical point of view be-
cause the model assumes a constant magnetic field that fills all spacetime,
so even without the presence of the massive body the energy atinfinity is
unbounded.

2.2 Dipolar Magnetic Field

As no magnetic monopole evidence has been found, the dipole magnetic
field is the first approximation (in general a good one) to the more com-
plex and realistic intrinsec magnetic field configuration of(astronomical)
objects. This fact makes the study of the dipolar configuration a really im-
portant one.

Following the results obtained by Petterson in [12] for the particular case
of a dipolar magnetic field with no electrostatic charge, we write the non
zero components of the4-vector potential as:
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whereµ is the dipole moment, considered in our case, to be parallel to the
rotation axis.

An important feature of the 4-vector potential is that is singular at the ring
singularity. One can extend the analysis done in [7] for the extreme and
super-extreme Kerr cases by studying the particular limiting case or the an-
alytic extension of the logaritmic function respectively (see [9] for details).

3 Motion in the equatorial plane

The magnetic fields we are studying preserve the backgruond symmetries
as they do not alter the Killing nature of∂φ and∂t.

With this fact we can do an analysis of the motion of charged particles in
the equatorial plane using the same arguments used in the pioneering work
of Carter [13] for uncharged particles.

The expresions involved are more complicated and the results a little more
difficult to interpret. In the following we are going to studysome aspects
of this particular problem.

We are going to study both Kerr’s black hole and Kerr’s naked singularity,
so we would allow the rotation parametera to exceed unity. The analysis of
the permited range for theλ parameter that messures the coupling between
the charge of a volume element and the extenal magnetic field is presented
in [8] and [14]. From the bounds they found we conclude that this pertur-
bative analysis we are going to perform is completelly aceptable to study a
fluid disc (wich we expect to be electrically neutral over large scales). In
this poster we are going to focus our attention on the innermost stable and
bound orbits for the co-rotating case.

As we know an exact solution for the non magnetized case we aregoing
to treat perturbatively in the magnetic field using the following approach:
expand in a Taylor polynomial the equations that govern the motion of
charged particles and use a few steps of the Newton method forfinding
roots of a trascendental equation to get an exact (up to the perturbation or-
der we are working with) solution.

3.1 Bound Orbits

We are going to analize the changes in the two solutions present in the
unmagnetized case studied, for example, in [2]. The radii ofthese orbits
(using the u-radial coordinatei.e. u = 1/r) are:

u01=
1

(
√

1+a−1)2
,

u02=
1

(1+
√

1−a)2
.

As mentioned previously one can reduce (even in the magnetized case) the
circular orbit conditions to a quartic equation forx. Intead of numerically
solving this equation we find “corrections” starting from the analytic result
x0 of theλ = 0 case and performing a few steps of a Newton method for
findign roots of trascendental equations. After calculating it we have both
x(u; a, λ) andE(u, x; a, λ). Then expanding in a Taylor series the condi-
tion for bound orbits, and explicitly using thatE(u0a,b, x

0; a, 0) = 1 one gets
the following expresion for the corrections in the radii of the two different
marginally bound orbits:
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from where we can obtain that:
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3.2 Innermost Stable Orbit

The analysis is virtually the same for this case, using the exact radius for the
innermost stable orbit available for the unmagnetized case. The expresion
for r0st = 1/u0st is given by the following expresion:

r0st=3+Z2−
√

(3−Z1)(3+Z1+2Z2)

where
Z1=1+(1−a2)1/3

[

(1+a)1/3+(1−a)1/3
]

, Z2=
√

3a2+Z2
1.

The main difference is that the linear (inλ) correction is null, because
dE
dλ (u

0
st, x

0; a, λ = 0) = 0, so the first non zero correction to the position
of the innermost stable orbit due to the presence of an uniform magnetic
field is cuadratic inλ and its expresion is given by:
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4 Results

Using expresions (1) and (2) we can write down analytic expresions for the
important radii we are studying. We present our results in the following
Figures.

4.1 Uniform Magnetic Field

Figure 1: We present the radii of the marginally bound orbit and of the innermost stable

ones. Equal colors mean equal values of the parameterλ: red forλ = 0, green forλ = 0.01

and black forλ = 0.1. The solid and dotted lines correspond to the marginally bound orbits

and the dashed ones to the innermost stable one. Our results are in complete agreement

with those of [2] and [8] for black holes.

4.2 Dipolar Magnetic Field

Figure 2: We present the radii of the marginally bound orbit and of the innermost stable

ones. Our results are in agreement with the obtained for a black hole in [14]. The line

styles and colours correspond to the ones explained in Figure 1.

The effect of the two magnetic field configurations is cualitatively differ-
ent as the uniform magnetic field decreases the values of the important raddi
for a givena whearas the dipolar one produces the oposite effect.

We conclude that observations of the disc structure around compact ob-
jects might be used to determine the nature of the central compact object as
our results suggest that external magnetic field affect these discs differently.
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