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| Abstract _
In this work we analyze the effects of an external magnetid ba charged par-

ticles following equatorial circular orbits around a Kepasetime, both in the black
hole and the naked singularity cases. Understanding tliesemena is of great im-
portance because equatorial circular orbits are a keyangneof (simple) accretion
disc models. In particular we study two important magnetddficonfigurations:
a) a uniform magnetic field aligned with the angular momentand b) a dipolar
magnetic field. We center our attention on the effect of tleedernal fields on the
marginally bound and marginally stable equatorial circaldits because they are
potentially observable quantities that could be usefuldt®dnine the nature of the
central object. Using a perturbative approach we are algja/éoanalytic results and
compare (in the black hole case) with previous results.

1 Introduction

Penrose’s Cosmic Censorship Conjecture (CCC) [1] Is ammmgiost iIm-
portant open questions of Einstein’s General Theory of iR\ and al-
though great efforts have been made over the past 40 yeaesishsill no
definitive answer to whether it is valid or not. In order to dls®me light
Into this question and give indications to whether CCC isddrioe or not
but not conclusive anwers, many different lines of thougatewused.

Even though the great efforts made, there are no conclubsereational
evidence of the actual nature of the ultra compact objeatsnétance up to
date no direct evidence of an event horizon has been foundhisaeason
finding observable features that could help us to distingbetween black
holes and naked singularities should be considered rdleday observa-
tion in this direction would enhance the current black haeapligm.

A common feature observed in a wide variety of astrophysecafior-
ments, particulary near compact objects, is the formati@toretion discs.

The study of the differences between accretion discs forneaind black
holes and naked singularities is important because it mayug a different
observational tool to determine the central object’s mat@ircular equa-
torial orbits are a key ingredient to study more realistiscamodels. In
this direction the ecuatorial circular orbits in the fieldafotating naked
singularity were studied in detail in [2].

The (main) astrophysical relevance of studying the aammetiscs formed
around ultracompact objects is that they are belived to lggnern of the
yet not completely understood astronomical phenomenalativistic jet
generation. This kind of extremely energetic phenomenaappn a wide
range of object’s scale: form AGN’s (quasars) to stellar snaack holes
Or neutron stars (microguasars).

As a possible explanation of the jet formation a disc-jefadimig has been
proposed by several authors [3], works trying to explaia timsolved ques-
tion are to be considered of great importance. Two of the raosgpted
mechanisms that can explain the energetics involved inaivistic jet
(whose matter can have Lorentz factor grater that 100) asedban ro-
tational energy extracted from the central rotating blaclkeho form the
jet: the Blandford-Znajek process [4] and Penrose’s masha/b, 6].

Asociated with accretion discs and compact objects thereisually ob-
served phenomena related with the precense of magnetis.fiethe inves-
tigation of the differences between the effects of simplgmnedic field con-
figurations on the orbits formed around a black hole and nakegllarity
could give us mechanisms to distinguish the nature of the@erompact
object. The effects of magnetic fields on accretion discsraia rotating
black hole where studied and the changes in the innermasesiebit and
In the marginally bound orbits is analized in [7], [8]. As we=anly able
to observe the effect of the presence of a black hole on pegtichanges
In these particular radii may give observable quantitied tould allow us
to distinguish between different available theoreticaldaele for compact
objects.

In this work were we are going to present some of the resul{9]ah
which we study the change in the position of the inner edgencdicere-
tion disc in Kerr spacetime generalizing previous resujtsalbowing the
rotation parameter to adopt values larger that 1. We present an analytica
study using a perturbative (in the parametahat measures the coupling
between matter and magnetic field strenght) approach tloat as not only
to test previous numerical results but also to reinforceth€his approach
to the problem limit our study to small values bf As we will see latter,
this restriction is not strong as we are interested in stglgnly the plasma
case which is a useful way to model a disc.

2 Stationary axisymmetric electromagnetic
fields in Kerr spacetime

Before introducing the electromagnetic field configuradiorme are going to
work with, we present some basic aspects of Kerr’'s spacetime

Using Boyer-Lindquist coordinates and metric signature-+,-the Kerr
solution [10] to the vacuum Einstein field equations is expokeas:
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where:
A =12 — 2M7°+a2 and X = r2+a20082<9.

2.1 Uniform Magnetic Field

The first exact solution for an external electromagnetidfiela Kerr back-
ground was found by Wald [11]. In this paper he derived thetsdenag-
netic field of a rotating black hole placed in a magnetic fietajioally
uniform and aligned with the rotation axis in order to presdhe Killing
vector fields of the unperturbed background.

Latter Petterson [12] derived explicit expresions for gahstationary ax-
Isymmetric electromagnetic fields in a Kerr background. @&kglicit solu-
tion given in [12] for thed-vector portential can be expresed as:
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whereB is the magnetic field strenght.

The divergent behavior of the magnetic vector potentialdoge values
of the radial coordinate was expected from a physical point of view be-
cause the model assumes a constant magnetic field that Ifdisaaetime,
so even without the presence of the massive body the energfiraty is
unbounded.

2.2 Dipolar Magnetic Field

As no magnetic monopole evidence has been found, the dipatgmatic
field Is the first approximation (in general a good one) to therercom-
plex and realistic intrinsec magnetic field configuration@étronomical)
objects. This fact makes the study of the dipolar configaraa really im-
portant one.

Following the results obtained by Petterson in [12] for thetigular case
of a dipolar magnetic field with no electrostatic charge, wedanthe non
zero components of thevector potential as:
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wherep Is the dipole moment, considered in our case, to be paraltakt
rotation axis.

An important feature of the 4-vector potential is that igsilar at the ring
singularity. One can extend the analysis done in [7] for tkireene and
super-extreme Kerr cases by studying the particular Ingigase or the an-
alytic extension of the logaritmic function respectivedg¢é [9] for detalls).
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3 Motion in the equatorial plane

The magnetic fields we are studying preserve the backgrugmdistries
as they do not alter the Killing nature 9§, ando;.

With this fact we can do an analysis of the motion of chargatiglas in
the equatorial plane using the same arguments used in thegriag work
of Carter [13] for uncharged particles.

The expresions involved are more complicated and the seglittle more
difficult to interpret. In the following we are going to stugpme aspects
of this particular problem.

We are going to study both Kerr’s black hole and Kerr’'s nakedwdarity,
so we would allow the rotation parameteto exceed unity. The analysis of
the permited range for theparameter that messures the coupling between
the charge of a volume element and the extenal magnetic sigictesented
In [8] and [14]. From the bounds they found we conclude thest plertur-
bative analysis we are going to perform is completelly agligetto study a
fluid disc (wich we expect to be electrically neutral ovegkascales). In
this poster we are going to focus our attention on the innstsi@able and
bound orbits for the co-rotating case.

As we know an exact solution for the non magnetized case wgang
to treat perturbatively in the magnetic field using the failog approach:
expand in a Taylor polynomial the equations that govern tlodian of
charged particles and use a few steps of the Newton methofihfing
roots of a trascendental equation to get an exact (up to ttterpation or-
der we are working with) solution.

3.1 Bound Orbits

We are going to analize the changes in the two solutions presehe
unmagnetized case studied, for example, in [2]. The radihe$e orbits
(using the u-radial coordinatee. v = 1/r) are:
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As mentioned previously one can reduce (even in the maguktase) the
circular orbit conditions to a quartic equation tar Intead of numerically
solving this equation we find “corrections” starting frone thnalytic result
2V of the A = 0 case and performing a few steps of a Newton method fof
findign roots of trascendental equations. After calcutattrwe have both
r(u;a, \) and E(u, z;a, \). Then expanding in a Taylor series the condi-
tion for bound orbits, and explicitly using thatw. ,. z%; a,0) = 1 one gets
the following expresion for the corrections in the radii béttwo different
marginally bound orbits:
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from where we can obtain that:
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3.2 Innermost Stable Orbit

The analysis is virtually the same for this case, using tlaeeradius for the
Innermost stable orbit available for the unmagnetized.chke expresion
for ¥, = 1/, is given by the following expresion:

r=3+Zy—/(3—21)(3+Z1+2Z5)
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where
Zy=14+(1—a?)'/? [(1+a)1/3+(1—a)1/3 . Zo=+/3a2+73.

The main difference is that the linear (X) correction is null, because
Cfl—?(ugt,xo; a,\ = 0) = 0, so the first non zero correction to the position
of the innermost stable orbit due to the presence of an unifmagnetic

field is cuadratic inf\ and its expresion is given by:
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4 Results

Using expresions (1) and (2) we can write down analytic extpres for the
Important radil we are studying. We present our results enftilowing
Figures.

4.1 Uniform Magnetic Field
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Figure 1. We present the radii of the marginally bound orbd af the innermost stable
ones. Equal colors mean equal values of the parameted for\ = 0, green for\ = 0.01
and black for\ = 0.1. The solid and dotted lines correspond to the marginallyndarbits
and the dashed ones to the innermost stable one. Our remailts @mplete agreement
with those of [2] and [8] for black holes.

4.2 Dipolar Magnetic Field
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Figure 2. We present the radii of the marginally bound orbd af the innermost stable
ones. Our results are in agreement with the obtained forckidlale in [14]. The line
styles and colours correspond to the ones explained in &ur

The effect of the two magnetic field configurations is cualiy differ-
ent as the uniform magnetic field decreases the values ahfh@tant raddi
for a givena whearas the dipolar one produces the oposite effect.

We conclude that observations of the disc structure aroongpact ob-
jects might be used to determine the nature of the centragbaotmbject as
our results suggest that external magnetic field affecetdesss differently.
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