Inverse scattering construction of dipole black rings
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Introduction / The big picture

Context: Gravity in higher dimensions is much richer than in 4D. Novel features
include:

more than 1 independent rotation plane;

existence of black holes (BHs) with non-spherical topology of the horizon;
non-uniqueness —a BH is not uniquely specified by its conserved charges;
possibility of non-conserved dipole charges, when considering gauge fields.

While [1] is obvious, novelties [2] and |3 are realized by the Emparan-Reall black ring
[1], whose horizon has S* x S? topology. Feature is explicitly displayed by
Emparan’s dipole ring solutions [2]. The presence of dipoles promotes the a priori
discrete BH non-uniqueness to a continuous non-uniqueness.

For D=5 vector-coupled black rings, (magnetic)
dipoles arise from integration of the magnetic
components of the two-form field strength over a
2-sphere linking the ring’s horizon.

Fig.1 Topology of a 5D black ring.

Methods

Inverse scattering method (ISM): Over the past decade, solution-generating
techniques have allowed for the “tailoring” of higher-dimensional black holes. The
ISM [4] has proved extremely useful to construct solutions of vacuum gravity in
cases when sufficient symmetry is available. More specifically:

The ISM can be applied to the construction of cohomogeneity-2 solutions of D-
dimensional vacuum gravity displaying D-2 commuting isometries;

This class of solutions can be asymptotically flat only for D<5. For D>6 one
necessarily has Kaluza-Klein (KK) asymptotics [5].

The ISM relies on the integrability properties of a GL(D-2,R) non-linear sigma model
on the corresponding two-dimensional surface. Inverse-scattering techniques are
particularly well suited to generate black rings in 5D since these solutions admit

three commuting Killing vectors (along time and two angular directions). Due to

it would seem that the applicability of the ISM for the construction of
asymptotically flat (AF) solutions is limited to dimensions smaller than six... but we
show otherwise in the following section.

Fig.3 Mapping between the fixed point sets of the isometries (on the left) and the
rod diagram (on the right)

Our approach / Results

From 6D vacuum gravity to 5D EMd: The action (1) can be obtained from 6D
vacuum gravity by performing a dimensional reduction on S according to the KK

ansatz:
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The sixth dimension is parameterized by w, while A is the vector potential from
which the field strength is derived, F=dA.

Our approach is now clear: We can generate charged black ring solutions within the
theory considered by applying the ISM in 6D and then reducing on a circle down to
5D. Thus, we exploit GL(4,R) integrability structure of the theory inherited from 6D
vacuum gravity.

Inverse scattering construction of dipole black rings: At this stage we only need to
identify a seed solution and the solitonic transformations in order to generate
charged black rings of the EMd theory under consideration.

The seed solution adopted in [8] is defined by the rod diagram shown in Fig.4.
Although it was motivated by the knowledge of the 6D uplift of the previously
known dipole ring [2], it may be used as a starting point for the construction of
more general black rings [9,10].

The novel ingredient in our construction is the finite rod along the KK direction w,
which allows the addition of dipole charge. The dashed rod in Fig.4 has negative
mass density and is included to facilitate adding the S* angular momentum to the
static seed.
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Fig.4 Rod diagram of the seed metric used in [8-10] to generate dipole black rings.

Conclusions / Outlook

We have presented a framework, based on the inverse scattering method for 6D vacuum gravity, suited for the generation of
charged, doubly spinning black rings in 5D Einstein-Maxwell-dilaton theory with a particular dilaton coupling. This approach was the
breakthrough needed to systematically construct the much sought-after family of most general (i.e., with 5 free parameters) black
rings in @ minimal extension of 5D general relativity. There has been very recent progress on this subject from various groups.

There is an obvious interest in obtaining solutions for other values of the dilaton coupling. In such cases the approach presented
herein cannot be employed, so different techniques must be developed. On the other hand, focusing on problems that can be
tackled with this scheme, it would be interesting to generate and investigate the physics of charged concentric black hole systems,

within the theory considered.
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Considerable amount of guesswork has usually been involved in the discovery of
many higher-dimensional black holes (e.g., black ring [1], dipole ring [2]). Whenever
solution-generating techniques are available, much quicker progress in the
construction of new black hole solutions has been possible.

Main problem: A technically challenging problem is the construction of the most
general asymptotically flat black ring in a simple 5D supergravity theory — a five-
parameter solution carrying mass, two angular momenta, electric charge and
magnetic dipole charge. Until recently the main stumbling block was the systematic
generation of the dipole charge and the most general known solutions possessed
only 3 parameters.

It was conjectured in [3] that a (non-supersymmetric) black ring should exist in
minimal supergravity with all five charges (M, J,, J,, Q, q) independent. The same
conjecture should hold for D=5 Einstein-Maxwell-dilaton, a venue very similar to
minimal supergravity, specially in the case of Kaluza-Klein dilaton coupling.

Motivation: In addition to the desire of having a complete knowledge of the
spectrum of black ring solutions, the search for such conjectured solutions is
motivated by the possibility of a microscopic account of their entropy. In fact, string
theory realizations of charged 5D black holes were essential in deriving a
microscopic interpretation of the Bekenstein-Hawking entropy formula.

Review of the ISM: Consider stationary, axisymmetric solutions of Einstein’s
equations in vacuum, R =0, and assume the existence of D-2 commuting Killing
vector fields. Then the metric may be expressed in canonical form [5, 6], which is
block diagonal and cohomogeneity-2:

D—3
ds® = Z Gii(p, z)dx'dx!/ + e?v(r:?) [dp2 + dzz} :
i,j=0

The vacuum Einstein equations then separate into two groups:

detG = —p?, (2)

8,U+ 0,V =0, Ov = —l+lTr(U2—v2),
2p 8p
1
where U= p(8,G)G™", V=p0:G)G .|| 0zv = 4—pTr(UV)-

The integrability condition 0,0-v = 00,V is automatically satisfied, so we need
only care about G;.

Constructing static (diagonal) solutions within this class is straightforward [5].
Writing the Killing part of the metric in terms of "potentials’ U/(p,2),

G = diag{—e?%, e?Y1 Y2 1,

the problem reduces to finding D-2 solutions U, of the Laplace equation in an
auxiliary cylindrically symmetric 3D flat space. Such Newtonian potentials are of
course known to be determined by rod-like sources along the axis of rotation (in
the auxiliary 3D space). In particular, for constant density rods the potentials are
entirely specified by the location of the rod endpoints a, which appear in
combinations known as solitons and anti-solitons:

fk = \/PZ+(Z_3K)2_(Z_3K)7 WZ—\/PzﬂL(Z—ak)z—(Z—ak)-
Constraint (2) translates into the restriction that the sources must add up to an
infinite rod. In conclusion, static vacuum solutions of the Einstein equations with
D-2 commuting isometries are completely determined by rod diagrams, as in Fig.3.

The singly-spinning dipole ring can be generated by the following steps [8].

1] Perform two 1-soliton transformations on the seed G, to obtain G,': remove an
anti-soliton at z=a, with trivial BZ vector (1,0,0,0) and remove a soliton at z=a,
with trivial BZ vector (0,0,0,1);

Perform a 2-soliton transformation on G, to obtain G: re-add anti-soliton at
z=a, with BZ vector (1,0,¢,,0) and re-add soliton at z=a, with BZ vector
(0,c,,0,1);

Obtain the conformal factor e?” from the knowledge of G, G, and e?".

Tune the BZ parameters ¢, and ¢, to guarantee regularity of the solution at
(p=0, z=a,) and (p=0, z=a,);

Bl The result (G, e?v), with the above-mentioned constraints imposed, is the 6D
uplift of Emparan’s dipole ring.

The general solution thus obtained features a conical singularity along the disk
bounded by the black ring. However, one might impose a further condition to
"balance’ the ring and remove this pathology.

A simple counting reveals we are in the presence of a 3 parameter solution, which
may be identified with mass, one angular momentum and dipole charge:
#a; + #¢; — (translational invariance in z) — (regularity conditions) — (balance condition) = 3
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More general black rings: To generate more general black rings one needs to
introduce rotation along the S? component. This may be accomplished with more
complicated solitonic transformations [9,10]. Alternatively, one may start with a
different seed, already including rotation along the S* [11].

Starting from the seed of Fig.4 one can generate a more general black ring by
replacing the previous steps |1 and |2 by the following:

il Remove solitons at a,, a, and a, with trivial BZ vectors (0,0,1,0), (0,1,0,0) and
(0,0,0,1), respectively, and remove an anti-soliton at a, with trivial BZ vector
(0,1,0,0);

Perform a 4-soliton transformation that adds back solitons at a,, a, and a, with
BZ vectors (c,,0,1,0), (0,1,b,,0) and (0,c,,0,1), and adds back the anti-soliton at
a, with BZ vector (b,,1,0,b,);

This procedure introduces 3 additional parameters, b..
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Fig.2 Some exactly known asymptotically flat, 5D vacuum black hole systems (from left to right):
Myers-Perry black hole, singly- or doubly-spinning black ring, black Saturn, bicycling ring, di-ring.

Goal: We will show how to systematically generate charged black ring solutions in
Einstein-Maxwell-dilaton (EMd) theory with a specific dilaton coupling,

1 1 1 2/2
S = d°x\/—g | R— =0,,00"¢ — —e 3 F,, F1" =—— (1
167TGN/ X g( 5 Onp0" e — g & hy ) 475 (1)

This theory can be obtained by dimensionally reducing 6D vacuum gravity on a
circle. It can also be thought of as the NS sector of low energy string theory in
Einstein frame.

This rod structure classification can be generalized to the stationary (not necessarily
diagonal) case [6]. The main difference is that the rods acquire non-trivial
directions, which for timelike rods yield information about the angular velocities of
event horizons. However, constructing non-static solutions is not as
straightforward...

The inverse scattering method, developed by Belinsky-Zakharov (BZ) in [4] for
stationary solutions, consists in replacing the original (non-linear) equation for
G(p,z) by a pair of linear equations for a generating matrix ¥(A,p,z) such that
W(0,p,2)=G(p,z). New solutions can be obtained by “dressing’ the generating matrix
W, of a known seed solution G, .

The power of the BZ approach stems from the following observation: If the seed is
diagonal and the dressing procedure is restricted to a certain class (solitonic
transformations), then the whole scheme is purely algebraic! The only input needed
are the set of solitons g, and a set of (constant) BZ vectors m, used in the
transformations. If the BZ vectors mix time and spatial Killing directions, then this
algorithm yields a rotating version of the original static solution.

Some relevant points:

Generically, after a solitonic transformation (2) is no longer obeyed (if D>4).
This issue can be circumvented by removing solitons with trivial BZ vectors and
then re-adding them with more general BZ vectors [7];

The seed solution need not be regular;

One might need to impose additional constraints to generate a regular solution.

New solution

<<

Known solution

Seed G remove solitons re-add solitons
0 (trivial BZ vectors) (general BZ vectors)

In [10] we have focused on the simpler case b;=0, but even so the analysis of the
novel solution is quite involved. Expressing the metrics generated through the ISM
in a simpler form, i.e. converting from Weyl coordinates (p,z) to C-metric
coordinates (x,y), is typically a tough task. Nevertheless, the full analysis can be
performed in Weyl coordinates. This includes finding the regularity and balance
conditions, imposing asymptotic flatness (of the 5D solution), and computing all the
physical charges.

The solution thus obtained supports both electric charge and magnetic dipole
charge, in addition to two angular momenta. Nevertheless, it has only 4 free
parameters so these charges are not all independent (see Fig.5, top left panel). The
solution presented in [10] appears to be irregular at one of the poles of the S2.
However, we checked that the more general solution with b;20 is regular, so the
former might be viewed as a singular limit of a family of regular solutions.

Finally, we confirmed that all physical charges of our solution reproduce those of
the dipole ring [2] in the singly-spinning limit (b,=b,=0) and of the doubly-spinning
ring [12] in the neutral limit (a,—a,=b,=0). It is interesting that these two solutions
can be simultaneously generated with a 3-soliton transformation (by setting
b,=b;=0 in our construction).
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Fig.5 Phase diagrams for various values of fixed charges. The quantities q,, q,,, j4 jy 0, and t, are
dimensionless combinations of the electric charge, magnetic dipole, S? angular momentum, S?!
angular momentum, event horizon area and temperature, respectively.
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