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Anti-de Sitter spacetime in d + 1 dimensions

AdS is the maximally symmetric solution of the vacuum Einstein equations
Rag — %gaBR + Agap = 0 with negative cosmological constant A < 0:

ds? = A PTG 2402 <

ST = — 1+£—2 t+m+r Sd—1, O_r, —o0o < t<oo
A= —d(d—1)/(2¢%)

Substituting r = £ tan x we get

EQ

(cos x)

d52 — |:7dt2 -+ dX2 =+ (Sin X)2 dQ%d—l )

2

—oo <t<+4oo, 0<x<7/2.

Conformal infinity x = 7/2 is the timelike hypersurface Z = R x S9!

with the boundary metric ds% = —dt? + ng.d,1
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Is AdS stable?

@ A solution (of a dynamical system) is said to be stable if small
perturbations of it at t = 0 remain small for all later times

@ The question of stability of AdS is open. Surprisingly, with almost
fifteen years of activity on AdS/CFT, this question has been rarely
asked (with a notable exception M. Anderson 2005)

@ In contrast, Minkowski (A = 0) and de Sitter spacetimes (A > 0) are
known to be stable (actually asymptotically stable) —
(Christodoulou&Klainerman 1993 and Friedrich 1986)

@ The key difference between these solutions and AdS: the main
mechanism of stability - dissipation of energy (dispersion in
Minkowski, expansion in de Sitter) - is absent in AdS because AdS is
effectively bounded (for no flux boundary conditions at Z it acts as a
perfect cavity)

@ Note that by positive energy theorems both Minkowski and AdS are
the unique ground states among asymptotically flat/AdS spacetimes
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Model

@ To deal with the problem of the stability of AdS we start with
spherical symmetry (effectually 1 + 1 dimensional problem)

@ Spherically symmetric vacuum solutions are static (Birkhoff's
theorem) = we need matter to generate dynamics

@ Simple matter model: massless scalar field ¢ in d+1 dimensions

Gop + Ngup = 87G (am dp) — ;gagﬁugba“gb) ,N=—d(d—1)/(20?)
g’V Vs =0

@ In the corresponding asymptotically flat (A = 0) model Christodoulou
proved the weak cosmic censorship (dispersion for small data and
collapse to a black hole for large data) and Choptuik discovered
critical phenomena at the threshold for black hole formation

@ Remark: For even d > 4 there is a way to bypass Birkhoff's theorem
(cohomogeneity-two Bianchi IX ansatz, Bizori, Chmaj, Schmidt 2005)
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@ Convenient parametrization of asymptotically AdS spacetimes

62
2
ds® = 5

- [_Ae*%dt2 + A Ldx? + (sin x)2 dQ%d_l ,
(cos x)

where A and § are functions of (¢, x).
o Auxiliary variables ® = ¢/ and M= A"1e%¢ (' =y, = d;)
e Field equations (using units where 87G = d — 1)

d—2 —|—2(sinx)2
(cos x) (sin x)
§' = — (cosx) (sinx) (¥ + M%) ,
1

(tanx)9™?

A =(1-A) — (cosx) (sinx) A (<D2 + ﬂ2) ;

¢ = (Ae*BI_I)/, Nn= [(tan x)91 Ae*‘sfb]/ .

@ AdS space: 9 =0, A=1, § =0; now we want to perturb AdS solving
the initial-boundary value problem for this system starting with some
small, smooth initial data (¢, ¢)j:—o
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Boundary conditions

@ We assume that initial data (¢, gi))|t:0 are smooth
@ Smoothness at the center implies that near x =0

B(t,x) = fo(t) + O(x?), §(t,x) = O(x?), A(t,x) =1+ O(x?)
@ Smoothness at spatial infinity and conservation of the total mass M
imply that near x = 7/2 (using z = 7/2 — x)
o(t,x) = fuo(t) 27 + O (zd+2) . 6(t,x) = 6so(t) + O (z2d) ,
Alt,x) =1— (M/t92)z9 + O (zd+2)

Remark: There is no freedom in prescribing boundary data
o Local well-posedness (Friedrich 1995, Holzegel&Smulevici 2011)
@ mass function and asymptotic mass:

m(t,x) = (1 —A(t, p)) (£tanx)?"? (1 + tan? x)
/2
M= lim m(t,x) :ed—2/ (AD? + AN?) (tanx)9 71 dx

x—m/2
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Movie

e from now d =3
@ qualitatively the same behaviour in any d > 3

o d = 2 case is very special (Pretorius&Choptuik 2000)
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Critical behavior

Initial data: ®(0,x) =0,M(0,x) =« [exp( tanx)2:|
We fix 0 = 1/16 and vary ¢.
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Remark: The generic endstate of evolution is the Schwarzschild-AdS BH
of mass M (in accord with Holzegel&Smulevici 2011)
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Key evidence for instability
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Key evidence for instability
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Weakly nonlinear perturbations

@ We seek an approximate solution starting from small initial data
(¢, @)je=0 = (£F(x), cg(x))

@ Perturbation series

¢ =cp1 + €3¢3 + ...
§=c%8) +c%0s + ...
1—A=22Ay+ %Ay + ...

where (¢1, ¢1)j1=0 = (f(x),&(x)) and (¢j, ¢;)t=0 = (0,0) for j > 1.

@ Inserting this expansion into the field equations and collecting terms
of the same order in £, we obtain a hierarchy of linear equations
which can be solved order-by-order.
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First order

o Linearized equation (Ishibashi&Wald 2004)

$1+Lp1 =0, L=-—

P O (ta n’x x)

The operator L is essentially self-adjoint on L2([0,7/2), tan’x dx).
e Eigenvalues and eigenvectors of L are (j =0,1,...)

. —j, 34
wj?:(3+2j)2, ej(x):NJ-(cosx)3F< 13/2 J

(sinx)?)

= AdS is linearly stable

@ Linearized solution
o0
1(t,x) = ) ajcos(w;jt + ;) g(x)
j=0
where amplitudes a; and phases [3; are determined by the initial data.
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Second order (back-reaction on the metric)
1+ 2sin -
A, + Lresinx Ay = sin x cos x (cb% + (15'12)
SIn X COS X
8% = — sin x cos x (cﬁ% + ¢’12)

SO

Ag(t X

/cblty +¢>’1(t,y)2>tan2ydy

0
X

saftx) == [ (e, + (302 siny cosy dy
0
quadratic in ¢1!

sin x

It follows that ) /2

M = % / (gi)l(t,y)2 + ¢/1(t,y)2) tan’y dy + O

0
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Third order

o ¢3+ Lpz=S(¢1,A2.02), (*)
where S 1= 2(Az + 02)d1 + (A2 + 92)P1 + (A5 + 65) .

o Let ¢3(t,x) = >_; cj(t) ej(x). Projecting Eq.(x) on the basis {e;} we
obtain an infinite set of decoupled forced harmonic oscillators for the
generalized Fourier coefficients ¢;(t) := (ej, ¢3)

¢ +wfcj =S5;:=(¢,S) and (g, éj)|t:0 =0

If S; has a part oscilating with a resonant frequency wj; it will give rise
to a secular term in ¢j, that is ¢; ~ tsinw;t or ¢; ~ tcosw;t.

@ S cubic in ¢1 = contains all frequencies | & w; &+ wp + w3|, where
wk € €7 and d)l(t,X) = Zk [wk S Ql] akcos(wkt + ﬁk) ek(x),
wg - odd integers = all frequencies in S potentially resonant!
Not all resonances survive the projection (ej, S). Some of those,
which do survive can be compensated with frequency shifts in ¢; and
are harmless for stability, but the others put stability in question!
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Example 1: single-mode data ¢(0, x) = ¢ ey(x)
o First order ¢1(t, x) = cos(wot)ep(x), wo =3 (wj =342j)
o Third order ¢3(t,x) = > "2 ci(t)ej(x), (¢ &)lig =0 and

& + wic = bjocos(wot) + bj3 cos(wst).

But b33 =0 (!) and only j = 0 is resonant.

The j = 0 resonance can be
easily removed by the

of {  two-scale method (slow-time
phase modulation) which gives
o ¢1 = cos((wg + L23262) t) eg(x).
1t 1 This suggests that there are
non-generic initial data which
may stay close to AdS solution

log[M2(t,0)]

-2
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Example 2: two-mode data ¢(0, x) = € (ep(x) + e1(x))

o First order ¢1(t, x) = cos(wot)ep(x) + cos(wit)er(x), wo =3, w1 =5
o Third order ¢3(t,x) = > 2 ci(t)ej(x), (¢ &)l,g=0 and

CJ-H/JJQC_, = Z[wk € Q3]bj x cos(wit), where Q3 = {|£wo 1Fwo,13wo 1
k

Here Q3 = {1,3,5,7,9,11, 13,15}, but the resonance (b;; # 0) only

if wj € {3,5,7}.
10° T — wo — wo + (87/7)€?,
: e=1/8 w1 — w1 + (413/71’)62 shifts
12k . mefe ] remove the resonances

wj = 3,5, but the resonance
wj = 7 cannot be removed.
Thus we get the secular term
e (t) ~ tsin(7t). We expect
this term to be a progenitor of
the onset of exponential

0 s 100 15 200 250 300 aso 400 instability.
t
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Conjectures

Our numerical and formal perturbative computations lead us to:

Conjecture 1

Anti-de Sitter space is unstable against the formation of a black hole
under arbitrarily small generic perturbations

Proof (and a precise formulation) is left as a challenge. Note that we do
not claim that all perturbed solutions end up as black holes.
Conjecture 2

There are non-generic initial data which may stay close to AdS solution;
Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Proof: KAM theory for PDEs?
Analogous conjecture for vacuum Einstein's equations by Dias, Horowitz
and Santos (2011) (existence of geons)
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Turbulence: transfer of energy from low to high frequencies
Let M; := (V'AT, &) and ®; := (VA®,¢). Then

w/2 o
M= / (AD? + AM?) (tan x)® dx = > Ej(t),
0 j=0

where E; := I'IJ2 + wj_2¢f can be interpreted as the j-mode energy.

104 : .
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Power-law scaling
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Final remarks

@ Weakly turbulent behavior seems to be common for (non-integrable)
nonlinear wave equations on bounded domains (e.g. NLS on torus,
Colliander,Keel, Staffilani, Takaoka, Tao 2008, Carles,Faou 2010) and
our work shows that Einstein's equations are not an exception.

o For Einstein's equations the transfer of energy to high frequencies
cannot proceed forever because concentration of energy on smaller
and smaller scales inevitably leads to the formation of a black hole.

@ We believe that the role of negative cosmological constant is purely
kinematical, that is the only role of A is to confine the evolution in an
effectively bounded domain. Similar turbulent dynamics has been
observed for small perturbations of Minkowski in a box (Maliborski)

@ Generalizations: different matter models, " deformed” boundary
conditions, relaxing symmetry, multi-scale analysis, (in)stability of
AdS black holes (Holzegel&Smulevici 2011, Horowitz 2012),
instability of AdSp11 (work in progress by Jatmuzna)
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