Turbulent Instability of Anti-de Sitter Space

Andrzej Rostworowski

Jagiellonian University

joint work with Piotr Bizoń Phys.Rev.Lett.107 031102 (2011) (arXiv:1104.3702)

now a part of joint project with Joanna Jałmużna, Patryk Mach and Maciej Maliborski

Prague, 28th June 2012

Anti-de Sitter spacetime in d + 1 dimensions

AdS is the maximally symmetric solution of the vacuum Einstein equations $R_{\alpha\beta}-\frac{1}{2}g_{\alpha\beta}R+\Lambda g_{\alpha\beta}=0$ with negative cosmological constant $\Lambda<0$:

$$ds^2 = -\left(1 + \frac{r^2}{\ell^2}\right)dt^2 + \frac{dr^2}{1 + r^2/\ell^2} + r^2d\Omega_{S^{d-1}}^2, \qquad 0 \le r, -\infty < t < \infty$$

$$\Lambda = -d(d-1)/(2\ell^2)$$

Substituting $r = \ell \tan x$ we get

$$ds^{2} = \frac{\ell^{2}}{(\cos x)^{2}} \left[-dt^{2} + dx^{2} + (\sin x)^{2} d\Omega_{S^{d-1}}^{2} \right],$$
$$-\infty < t < +\infty, \quad 0 \le x < \pi/2.$$

Conformal infinity $x=\pi/2$ is the timelike hypersurface $\mathcal{I}=\mathbb{R}\times S^{d-1}$ with the boundary metric $ds_{\mathcal{I}}^2=-dt^2+d\Omega_{S^{d-1}}^2$

Is AdS stable?

- A solution (of a dynamical system) is said to be stable if small perturbations of it at t=0 remain small for all later times
- The question of stability of AdS is open. Surprisingly, with almost fifteen years of activity on AdS/CFT, this question has been rarely asked (with a notable exception M. Anderson 2005)
- In contrast, Minkowski ($\Lambda=0$) and de Sitter spacetimes ($\Lambda>0$) are known to be stable (actually asymptotically stable) (Christodoulou&Klainerman 1993 and Friedrich 1986)
- The key difference between these solutions and AdS: the main mechanism of stability dissipation of energy (dispersion in Minkowski, expansion in de Sitter) is absent in AdS because AdS is effectively bounded (for no flux boundary conditions at $\mathcal I$ it acts as a perfect cavity)
- Note that by positive energy theorems both Minkowski and AdS are the unique ground states among asymptotically flat/AdS spacetimes

Model

- ullet To deal with the problem of the stability of AdS we start with spherical symmetry (effectually 1+1 dimensional problem)
- Spherically symmetric vacuum solutions are static (Birkhoff's theorem) ⇒ we need matter to generate dynamics
- Simple matter model: massless scalar field ϕ in d+1 dimensions

$$\begin{split} & \textit{G}_{\alpha\beta} + \mathop{\Lambda} g_{\alpha\beta} = 8\pi \textit{G} \left(\partial_{\alpha} \phi \, \partial_{\beta} \phi - \frac{1}{2} g_{\alpha\beta} \partial_{\mu} \phi \partial^{\mu} \phi \right), \, \mathop{\Lambda} = -\textit{d} (\textit{d} - 1)/(2\ell^2) \\ & g^{\alpha\beta} \nabla_{\alpha} \nabla_{\beta} \phi = 0 \end{split}$$

- In the corresponding asymptotically flat ($\Lambda=0$) model Christodoulou proved the weak cosmic censorship (dispersion for small data and collapse to a black hole for large data) and Choptuik discovered critical phenomena at the threshold for black hole formation
- Remark: For even $d \ge 4$ there is a way to bypass Birkhoff's theorem (cohomogeneity-two Bianchi IX ansatz, Bizoń, Chmaj, Schmidt 2005)

Convenient parametrization of asymptotically AdS spacetimes

$$ds^{2} = \frac{\ell^{2}}{(\cos x)^{2}} \left[-Ae^{-2\delta}dt^{2} + A^{-1}dx^{2} + (\sin x)^{2} d\Omega_{S^{d-1}}^{2} \right],$$

where A and δ are functions of (t,x).

- Auxiliary variables $\Phi = \phi'$ and $\Pi = A^{-1}e^{\delta}\dot{\phi}$ $(' = \partial_x, \dot{} = \partial_t)$
- ullet Field equations (using units where $8\pi G=d-1$)

$$A' = (1 - A) \frac{d - 2 + 2(\sin x)^2}{(\cos x)(\sin x)} - (\cos x)(\sin x) A (\Phi^2 + \Pi^2),$$

$$\delta' = -(\cos x)(\sin x) (\Phi^2 + \Pi^2),$$

$$\dot{\Phi} = (Ae^{-\delta}\Pi)', \qquad \dot{\Pi} = \frac{1}{(\tan x)^{d-1}} \left[(\tan x)^{d-1} Ae^{-\delta} \Phi \right]'.$$

• AdS space: $\phi \equiv 0$, $A \equiv 1$, $\delta \equiv 0$; now we want to perturb AdS solving the initial-boundary value problem for this system starting with some small, smooth initial data $(\phi,\dot{\phi})_{|t=0}$

Boundary conditions

- ullet We assume that initial data $(\phi,\dot{\phi})_{|t=0}$ are smooth
- Smoothness at the center implies that near x = 0

$$\phi(t,x) = f_0(t) + \mathcal{O}(x^2), \quad \delta(t,x) = \mathcal{O}(x^2), \quad A(t,x) = 1 + \mathcal{O}(x^2)$$

• Smoothness at spatial infinity and conservation of the total mass M imply that near $x = \pi/2$ (using $z = \pi/2 - x$)

$$\phi(t,x) = f_{\infty}(t) z^{d} + \mathcal{O}\left(z^{d+2}\right), \quad \delta(t,x) = \delta_{\infty}(t) + \mathcal{O}\left(z^{2d}\right),$$
$$A(t,x) = 1 - \left(\frac{M}{\ell^{d-2}}\right) z^{d} + \mathcal{O}\left(z^{d+2}\right)$$

Remark: There is no freedom in prescribing boundary data

- Local well-posedness (Friedrich 1995, Holzegel&Smulevici 2011)
- mass function and asymptotic mass:

$$m(t,x) = (1 - A(t,\rho)) (\ell \tan x)^{d-2} (1 + \tan^2 x)$$

$$M = \lim_{x \to \pi/2} m(t,x) = \ell^{d-2} \int (A\Phi^2 + A\Pi^2) (\tan x)^{d-1} dx$$

Movie

- from now d = 3
- qualitatively the same behaviour in any $d \ge 3$
- d = 2 case is very special (Pretorius&Choptuik 2000)

Critical behavior

Initial data:
$$\Phi(0,x) = 0$$
, $\Pi(0,x) = \varepsilon \left[\exp\left(-\frac{\tan x}{\sigma}\right)^2 \right]$
We fix $\sigma = 1/16$ and vary ε .

There is a decreasing sequence of critical amplitudes ε_n for which the evolution, after making *n* reflections from the AdS boundary, locally asymptotes Choptuik's solution. In each small right neighborhood of ε_n

$$m_{BH}(\varepsilon) \sim (\varepsilon - \varepsilon_n)^{\gamma}$$

with $\gamma \simeq 0.37$. It seems that

BH mass vs. amplitude $\lim_{n \to \infty} \varepsilon_n = 0$ Remark: The generic endstate of evolution is the Schwarzschild-AdS BH of mass M (in accord with Holzegel&Smulevici 2011)

Key evidence for instability

Ricci scalar $R = 2 (\Phi^2 - \Pi^2) / \ell^2 - 12 / \ell^2$

Key evidence for instability

Onset of instability at time $t = \mathcal{O}(\varepsilon^{-2})$

Weakly nonlinear perturbations

- We seek an approximate solution starting from small initial data $(\phi, \dot{\phi})_{|t=0} = (\varepsilon f(x), \varepsilon g(x))$
- Perturbation series

$$\phi = \varepsilon \phi_1 + \varepsilon^3 \phi_3 + \dots$$
$$\delta = \varepsilon^2 \delta_2 + \varepsilon^4 \delta_4 + \dots$$
$$1 - A = \varepsilon^2 A_2 + \varepsilon^4 A_4 + \dots$$

where
$$(\phi_1, \dot{\phi}_1)_{|t=0} = (f(x), g(x))$$
 and $(\phi_j, \dot{\phi}_j)_{|t=0} = (0, 0)$ for $j > 1$.

• Inserting this expansion into the field equations and collecting terms of the same order in ε , we obtain a hierarchy of linear equations which can be solved order-by-order.

First order

Linearized equation (Ishibashi&Wald 2004)

$$\ddot{\phi}_1 + L\phi_1 = 0, \quad L = -\frac{1}{\tan^2 x} \, \partial_x \left(\tan^2 x \, \partial_x \right)$$

The operator L is essentially self-adjoint on $L^2([0, \pi/2), \tan^2 x dx)$.

• Eigenvalues and eigenvectors of L are (j = 0, 1, ...)

$$\omega_j^2 = (3+2j)^2, \quad e_j(x) = N_j (\cos x)^3 F\left(\begin{array}{c} -j, \ 3+j \\ 3/2 \end{array} \middle| (\sin x)^2 \right)$$

 \Rightarrow AdS is linearly stable

Linearized solution

$$\phi_1(t,x) = \sum_{j=0}^{\infty} a_j \cos(\omega_j t + \beta_j) e_j(x)$$

where amplitudes a_j and phases β_j are determined by the initial data.

Second order (back-reaction on the metric)

$$A_{2}' + \frac{1 + 2\sin^{2}x}{\sin x \cos x} A_{2} = \sin x \cos x \left(\dot{\phi}_{1}^{2} + {\phi'_{1}}^{2}\right)$$
$$\delta_{2}' = -\sin x \cos x \left(\dot{\phi}_{1}^{2} + {\phi'_{1}}^{2}\right)$$

so

$$A_2(t,x) = \frac{\cos^3 x}{\sin x} \int_0^x \left(\dot{\phi}_1(t,y)^2 + \phi_1'(t,y)^2 \right) \tan^2 y \, dy$$

$$\delta_2(t,x) = -\int_0^x \left(\dot{\phi}_1(t,y)^2 + \phi_1'(t,y)^2 \right) \sin y \cos y \, dy$$
quadratic in ϕ_1 !

(1)

It follows that
$$M=\frac{\varepsilon^2}{2}\int\limits_0^{\pi/2}\left(\dot\phi_1(t,y)^2+\phi_1'(t,y)^2\right)\tan^2\!y\,dy+\mathcal{O}(\varepsilon^4)$$

Third order

- $\ddot{\phi}_3 + L\phi_3 = S(\phi_1, A_2, \delta_2),$ where $S := 2(A_2 + \delta_2)\ddot{\phi}_1 + (\dot{A}_2 + \dot{\delta}_2)\dot{\phi}_1 + (A'_2 + \delta'_2)\phi'_1.$ (*)
- Let $\phi_3(t,x) = \sum_j c_j(t) e_j(x)$. Projecting Eq.(*) on the basis $\{e_j\}$ we obtain an infinite set of decoupled forced harmonic oscillators for the generalized Fourier coefficients $c_j(t) := (e_j, \phi_3)$

$$\ddot{c}_j + \omega_j^2 c_j = S_j := (e_j, S)$$
 and $(c_j, \dot{c}_j)|_{t=0} = 0$

If S_j has a part oscilating with a resonant frequency ω_j it will give rise to a secular term in c_i , that is $c_i \sim t \sin \omega_i t$ or $c_i \sim t \cos \omega_i t$.

• S cubic in $\phi_1 \Rightarrow$ contains all frequencies $|\pm \omega_1 \pm \omega_2 \pm \omega_3|$, where $\omega_k \in \Omega_1$ and $\phi_1(t,x) = \sum_k [\omega_k \in \Omega_1] \, a_k \text{cos}(\omega_k t + \beta_k) \, e_k(x)$, ω_k - odd integers \Rightarrow all frequencies in S potentially resonant! Not all resonances survive the projection (e_j, S) . Some of those, which do survive can be compensated with frequency shifts in ϕ_1 and are harmless for stability, but the others put stability in question!

Example 1: single-mode data $\phi(0, x) = \varepsilon e_0(x)$

- First order $\phi_1(t,x) = \cos(\omega_0 t)e_0(x)$, $\omega_0 = 3$ $(\omega_j = 3 + 2j)$
- Third order $\phi_3(t,x) = \sum_{j=0}^{\infty} c_j(t)e_j(x), \quad (c_j,\dot{c}_j)|_{t=0} = 0$ and

$$\ddot{c}_j + \omega_j^2 c_j = b_{j,0} \cos(\omega_0 t) + b_{j,3} \cos(\omega_3 t).$$

But $b_{3,3} = 0$ (!) and only j = 0 is resonant.

The j=0 resonance can be easily removed by the two-scale method (slow-time phase modulation) which gives $\phi_1=\cos((\omega_0+\frac{153}{4\pi}\varepsilon^2)\,t)\,e_0(x)$. This suggests that there are non-generic initial data which may stay close to AdS solution

Example 2: two-mode data $\phi(0,x) = \varepsilon \left(e_0(x) + e_1(x)\right)$

- First order $\phi_1(t,x) = \cos(\omega_0 t)e_0(x) + \cos(\omega_1 t)e_1(x)$, $\omega_0 = 3$, $\omega_1 = 5$
- Third order $\phi_3(t,x)=\sum_{j=0}^\infty c_j(t)e_j(x),\quad (c_j,\dot{c}_j)|_{t=0}=0$ and

$$\ddot{c}_j + \omega_j^2 c_j = \sum_k [\omega_k \in \Omega_3] b_{j,k} \cos(\omega_k t), \quad \text{where } \Omega_3 = \{|\pm \omega_{0,1} \pm \omega_{0,1}$$

Here $\Omega_3 = \{1, 3, 5, 7, 9, 11, 13, 15\}$, but the resonance $(b_{j,j} \neq 0)$ only if $\omega_j \in \{3, 5, 7\}$.

 $\omega_0 \rightarrow \omega_0 + (87/\pi)\epsilon^2$, $\omega_1 \rightarrow \omega_1 + (413/\pi)\epsilon^2$ shifts remove the resonances $\omega_j = 3, 5$, but the resonance $\omega_j = 7$ cannot be removed. Thus we get the secular term $c_2(t) \sim t \sin(7t)$. We expect this term to be a progenitor of the onset of exponential instability.

Conjectures

Our numerical and formal perturbative computations lead us to:

Conjecture 1

Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations

Proof (and a precise formulation) is left as a challenge. Note that we do not claim that all perturbed solutions end up as black holes.

Conjecture 2

There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Proof: KAM theory for PDEs?

Analogous conjecture for vacuum Einstein's equations by Dias, Horowitz and Santos (2011) (existence of geons)

Turbulence: transfer of energy from low to high frequencies

Let $\Pi_j := (\sqrt{A}\,\Pi, e_j)$ and $\Phi_j := (\sqrt{A}\,\Phi, e_j')$. Then

$$M = \ell \int_{0}^{\pi/2} (A\Phi^{2} + A\Pi^{2}) (\tan x)^{2} dx = \sum_{j=0}^{\infty} E_{j}(t),$$

where $E_j := \prod_j^2 + \omega_j^{-2} \Phi_j^2$ can be interpreted as the *j*-mode energy.

Power-law scaling

Final remarks

- Weakly turbulent behavior seems to be common for (non-integrable) nonlinear wave equations on bounded domains (e.g. NLS on torus, Colliander, Keel, Staffilani, Takaoka, Tao 2008, Carles, Faou 2010) and our work shows that Einstein's equations are not an exception.
- For Einstein's equations the transfer of energy to high frequencies cannot proceed forever because concentration of energy on smaller and smaller scales inevitably leads to the formation of a black hole.
- We believe that the role of negative cosmological constant is purely kinematical, that is the only role of Λ is to confine the evolution in an effectively bounded domain. Similar turbulent dynamics has been observed for small perturbations of Minkowski in a box (Maliborski)
- Generalizations: different matter models, "deformed" boundary conditions, relaxing symmetry, multi-scale analysis, (in)stability of AdS black holes (Holzegel&Smulevici 2011, Horowitz 2012), instability of AdS₂₊₁ (work in progress by Jałmużna)