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General Relativity: 

Einstein Hilbert action:  

GR is perturbatively non-renormalizable,  may make sense as 
 an effective theory working perturbatively in the  
powers of a dimensionless small parameter G (Energy)D-2   
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Eq. of motion are 2nd order partial hyperbolic diff. equations.  

The presence of higher curvature terms from loop corrections is 
presumably inevitable.  



The general form is: 
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What kind of higher curvature terms you prefer? 

EOM of a gravity theory: 
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Q. Whether all such eq. of motion are derivable from a Lagrangian? 
Ans:  Don’t know!! 

Add a new condition, eq. of motion is second order  
just like Einstein’s equation, then answer is unique. 
Lovelock Lagrangian.  
D. Lovelock. J. Math. Phys. 1971 



For m-th order Lovelock term to contribute: D 2m+1 
 
Gauss Bonnet term is non trivial from D = 5 
 
 
Lovelock eoms are the most general second rank, divergence free 
tensors,  constructed from metric and curvatures,  which contains 
not more than second derivative of the metric. 
 
A natural generalization of Einstein tensor in higher dimensions. 
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# Lovelock gravity is unique (perturbative) ghost free theory  
   of gravity . Zwiebach 1986, Gross-Witten 1986. 

 
# Eq. of motion is well-defined second order differential  
   eqns. Initial value formalism is well-defined. 
 
# Explicit black hole solutions are known. 
                                       Boulware, Deser, PRL, 1986. 
 
# At least in the context of hetoretic string theory, GB term arises 
   as a quantum correction to GR. The microscopic calculations 
   produces correct Wald entropy even up to the right factors. 
                                                            Cardoso et. al. PLB 1998, A Sen, JHEP, 2006 
 

Lovelock is a LOVELY theory…….. 



Extension of the laws of black hole mechanics for Lanczos Lovelock Gravity 
 
    An important question for people who live in the higher dimension!! 



Zeroth Law: 

Surface gravity is constant on a black hole horizon in GR 
provided dominant energy condition holds. 
Bender et. al. (1974) 

Surface gravity is constant on a Killing horizon in Lovelock Gravity 
provided dominant energy condition holds. 
SS, S Bhattacharya (2012), arXiv:1205.2042. 

Surface gravity is constant on the horizon of a static black hole 
and stationary axisymmetric black hole with t-phi reflection 
Symmetry. Racz & Wald, CQG (1995) 

 



First Law: (Equilibrium state version) 

For any diff. invariant Lagrangian, it is possible to show that 
for a stationary black hole: Wald 1993, Wald and Iyer, 1994. 
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In general, entropy is no longer proportional to area. 
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The Wald entropy is an unambiguous notion of horizon entropy 
for stationary Killing horizons.   
 
Does this entropy obeys a second law? 

Physical process version: 
 
How the area of a black hole changes when one throws matter 
in to the black hole. Wald (1994), Jacobson et. al. (2001) 
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Generalization to Einstein Gauss Bonnet gravity:  
A Chatterjee, SS (PRL, 2011)  
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;  A local version of BH mechanics. 



(Classical) Second Law in GR (Hawking’s area theorem) : 

Horizon cross-sectional area cannot decrease in any classical 
process, provided Einstein’s equation together with the 
null energy condition hold.  

A linearized proof of area theorem: 
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Raychaudhuri eq. 

We assume that the perturbation of the horizon are ``small” 
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Physical Process: 
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Which implies, for every slice 
prior to future, 

Final stationary state 

In falling matter 

Perturbed Horizon 

Unperturbed Horizon 
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We like to proof this for Lovelock gravity, as an illustration 
Let us concentrate first on m=2, Einstein Gauss Bonnet gravity: 



EOM is:  
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Prove that, this entropy always increases for small perturbations 
as long as NEC holds.   

Entropy candidate: 

Theory: 
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Note that, we only need to evaluate first order departures from the 
background space time.  
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Let us concentrate on the remaining terms: 
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Hence, for small perturbations: 
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Which implies, on every slice prior to future, 

The proof can be extended to all Lovelock terms in any dimensions. 
arXiv:1201.2947, PRD, Rapid Communications.   

In a physical process, the entropy for Lovelock black holes  
Increases as long as matter obeys null energy condition. 
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 Going beyond small perturbation assumption? 
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It depends on the signs of the higher order terms.  

We need to calculate higher order terms: A thermodynamic 
generalization of Raychaudhuri equation. 
                                                    (SS, Sanved Kolekar, in progress) 
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
 GR result: 



                                               Open problems: 
 
        1. Extend the result beyond linear perturbations. 
 
        2.  Study uniqueness theorems for black holes in Lovelock 
             gravity (at least for static case).   
 
        3.  Possible topologies of black holes. Are they constrained 
             as in the case of GR . 
 
        4. (Most important) Establish positive mass theorem. 



Thanks 


