Geometrodynamics beyond Einstein

Frederic P. Schuller

Max Planck Institute for Gravitational Physics

fps@aei.mpg.de

(M,G) smooth manifold $\underbrace{}_{\text{any tensor field}}$

(M,G) smooth manifold $\underbrace{}_{\text{any tensor field}}$

Can such geometries provide spacetime kinematics?

Can one infer their gravitational dynamics?

(M,G) smooth manifold $\underbrace{}_{\text{any tensor field}}$

Can such geometries provide spacetime kinematics? Yes, but not all.

<u>Predictivity</u> and <u>quantizability</u> of matter dynamics impose powerful restrictions on geometry .

Can one infer their gravitational dynamics?

(M,G) smooth manifold $\underbrace{}_{\text{any tensor field}}$

Can such geometries provide spacetime kinematics? Yes, but not all.

<u>Predictivity</u> and <u>quantizability</u> of matter dynamics impose powerful restrictions on geometry .

Can one infer their gravitational dynamics? Yes.

Dynamics <u>determined</u> for all restricted geometries.

matter action \longrightarrow (M,G) \longleftarrow geometry

Geometry must be bi-hyperbolic to carry matter.

Maxwell theory $\longrightarrow (M, G^{(\cdot \cdot)}) \longleftarrow \underline{\mathsf{metric}}$ geometry

Maxwell theory $\longrightarrow (M, G^{(\cdot \cdot)}) \longleftarrow \underline{\mathsf{metric}}$ geometry calculate

principal polynomial $P_G^{ab} = g^{ab}$

$$P_G^{ab} = g^{ab}$$

Metric must be of special algebraic class to carry Maxwell (Lorentzian)

 $\underline{\text{Maxwell theory}} \longrightarrow (M, G^{[\cdot \cdot][\cdot \cdot]}) \longleftarrow \underline{\text{area metric geometry}}$

principal polynomial

$$P_G^{abcd} = \epsilon \dots \epsilon \dots G^{\cdots (a} G^{b|\cdots|c} G^{d)\cdots}$$

principal polynomial

$$P_G^{abcd} = \epsilon \dots \epsilon \dots G^{\cdots (a} G^{b|\cdots|c} G^{d)\cdots}$$

principal polynomial

$$P_{G}{}^{abcd} = \epsilon \epsilon G^{\cdot \cdot \cdot \cdot (a} G^{b| \cdot \cdot |c} G^{d) \cdot \cdot \cdot}$$
 hyperbolic

principal polynomial

$$P_{G}{}^{abcd} = \epsilon \epsilon G^{\cdot \cdot \cdot \cdot (a} G^{b|\cdot \cdot |c} G^{d) \cdot \cdot \cdot}$$
 hyperbolic

calculate

projective dual

$$P_{G\,abcd}^{\#} = \epsilon^{\cdots} \epsilon^{\cdots} G_{\cdots(a} G_{b|\cdots|c} G_{d)\cdots}$$

principal polynomial

$$P_{G}{}^{abcd} = \epsilon \epsilon G^{\cdot \cdot \cdot \cdot (a} G^{b| \cdot \cdot | c} G^{d) \cdot \cdot \cdot}$$
 hyperbolic

projective dual

$$P_{G\,abcd}^{\#}=\epsilon^{....}\epsilon^{....}G..._{(a}G_{b|\cdot\cdot|c}G_{d)...}$$
 hyperbolic

$$P_{G}{}^{abcd} = \epsilon \epsilon G^{\cdot \cdot \cdot \cdot (a} G^{b| \cdot \cdot |c} G^{d) \cdot \cdot \cdot}$$
 hyperbolic

projective dual

$$P_{G\,abcd}^{\#}=\epsilon^{....}\epsilon^{....}G_{...(a}G_{b|\cdot\cdot|c}G_{d)...}$$
 hyperbolic

cotangent space

tangent space

massless momenta

massless momenta

light velocities

massless momenta

light velocities

observer velocities

Bi-hyperbolic spacetime kinematics

massless momenta

$$\begin{array}{ccc} \operatorname{Gauss} & \frac{\partial P(k)}{\partial k_a} \end{array}$$

light velocities

stable massive momenta

$$k_a \mapsto \frac{\text{Legendre}}{\partial k_a}$$

 $\frac{\partial \ln P(k)}{\partial k_a}$ observer velocities

Bi-hyperbolic spacetime kinematics

massless momenta

light velocities

 $P_G^\#$

stable massive momenta

$$k_a \stackrel{\mathsf{Legendre}}{\longleftarrow} \frac{\partial \ln P(k)}{\partial k_a}$$

observer velocities

Divine view

Human view

Divine view

4-geometry is known everywhere

Human view

only 3-geometry on one surface known

Divine view

- 4-geometry is known everywhere
- 3-geometry pushed by linear operators

 $\begin{array}{ll} \text{normal} & \mathcal{H}(N) \\ \text{tangential} & \mathcal{D}(\vec{N}) \end{array}$

Human view

only 3-geometry on one surface known

Divine view

- 4-geometry is known everywhere
- 3-geometry pushed by linear operators

$$egin{array}{ll} {\sf normal} & {\cal H}(N) \ {\sf tangential} & {\cal D}(ec{N}) \end{array}$$

Human view

- only 3-geometry on one surface known
- 3-geometry evolves to another surface

$$\operatorname{Ham} = \int_{\text{surface}} \left(N \hat{\mathcal{H}}[q, \pi] + N^{\alpha} \hat{\mathcal{D}}[q, \pi] \right)$$

Divine view

- 4-geometry is known everywhere
- 3-geometry pushed by linear operators

 $\begin{array}{ll} \text{normal} & \mathcal{H}(N) \\ \text{tangential} & \mathcal{D}(\vec{N}) \end{array}$

satisfying commutator algebra [. , .]

Human view

- only 3-geometry on one surface known
- 3-geometry evolves to another surface

$$\operatorname{Ham} = \int_{\text{surface}} \left(N \hat{\mathcal{H}}[q, \pi] + N^{\alpha} \hat{\mathcal{D}}[q, \pi] \right)$$

$$[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1)P^{\alpha\beta}(M\partial_{\beta}N - N\partial_{\beta}M)\partial_{\alpha}),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$$

Divine view

- 4-geometry is known everywhere
- 3-geometry pushed by linear operators

 $\begin{array}{ll} \text{normal} & \mathcal{H}(N) \\ \text{tangential} & \mathcal{D}(\vec{N}) \end{array}$

satisfying commutator algebra [. , .]

Human view

- only 3-geometry on one surface known
- 3-geometry evolves to another surface

$$\operatorname{Ham} = \int_{\text{surface}} \left(N \hat{\mathcal{H}}[q, \pi] + N^{\alpha} \hat{\mathcal{D}}[q, \pi] \right)$$

satisfying Poisson algebra { . , . }

$$\{\hat{\mathcal{H}}(N), \hat{\mathcal{H}}(M)\} = \hat{\mathcal{D}}((\deg P - 1)\hat{P}^{\alpha\beta}(M\partial_{\beta}N - N\partial_{\beta}M)\partial_{\alpha}),$$

$$\{\hat{\mathcal{D}}(N^{\alpha}\partial_{\alpha}), \hat{\mathcal{H}}(M)\} = \hat{\mathcal{H}}(N^{\alpha}\partial_{\alpha}M),$$

$$\{\hat{\mathcal{D}}(N^{\alpha}\partial_{\alpha}), \hat{\mathcal{D}}(M^{\beta}\partial_{\beta})\} = \hat{\mathcal{D}}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$$

"encodes info about matter"

Divine view

- 4-geometry is known everywhere
- 3-geometry pushed by linear operators

normal $\mathcal{H}(N)$ tangential $\mathcal{D}(N)$

Human view

- only 3-geometry on one surface known
- 3-geometry evolves to another surface

$$\operatorname{Ham} = \int_{\text{surface}} \left(N \hat{\mathcal{H}}[q, \pi] + N^{\alpha} \hat{\mathcal{D}}[q, \pi] \right)$$

satisfying commutator algebra [.,.] satisfying Poisson algebra {.,.}

$$\{\hat{\mathcal{H}}(N), \hat{\mathcal{H}}(M)\} = \hat{\mathcal{D}}((\deg P - 1)\hat{P}^{\alpha\beta}(M\partial_{\beta}N - N\partial_{\beta}M)\partial_{\alpha}),$$

$$\{\hat{\mathcal{D}}(N^{\alpha}\partial_{\alpha}), \hat{\mathcal{H}}(M)\} = \hat{\mathcal{H}}(N^{\alpha}\partial_{\alpha}M),$$

$$\{\hat{\mathcal{D}}(N^{\alpha}\partial_{\alpha}), \hat{\mathcal{D}}(M^{\beta}\partial_{\beta})\} = \hat{\mathcal{D}}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$$

Devising consistent

gravitational dynamics for bi-hyperbolic spacetimes*

Devising consistent gravitational dynamics for bi-hyperbolic spacetimes*

^{*} i.e., for <u>any</u> tensorial spacetime geometry that can carry predictive and quantizable matter.

Devising consistent

gravitational dynamics for bi-hyperbolic spacetimes*

[Hojman, Kuchar, Teitelboim, Ann Phys 197] [Raetzel, Rivera, FPS, PRD 2011]

representing the deformation algebra

^{*} i.e., for any tensorial spacetime geometry that can carry predictive and quantizable matter.

Devising consistent

gravitational dynamics for bi-hyperbolic spacetimes*

[Hojman, Kuchar, Teitelboim, Ann Phys 197] [Raetzel, Rivera, FPS, PRD 2011]

representing the deformation algebra

[Giesel, FPS, Witte, Wohlfarth, PRD 2012]

solving a

linear homogeneous PDE system.

^{*} i.e., for any tensorial spacetime geometry that can carry predictive and quantizable matter.

Devising consistent

gravitational dynamics for bi-hyperbolic spacetimes*

[Hojman, Kuchar, Teitelboim, Ann Phys 197] [Raetzel, Rivera, FPS, PRD 2011]

representing the deformation algebra

[Giesel, FPS, Witte, Wohlfarth, PRD 2012]

solving a

linear homogeneous PDE system.

^{*} i.e., for <u>any</u> tensorial spacetime geometry that can carry predictive and quantizable matter.

Devising consistent

gravitational dynamics for bi-hyperbolic spacetimes*

[Hojman, Kuchar, Teitelboim, Ann Phys 197] [Raetzel, Rivera, FPS, PRD 2011]

representing the deformation algebra

[Giesel, FPS, Witte, Wohlfarth, PRD 2012]

solving a

linear homogeneous PDE system.

"All info about modified gravity is encoded in one linear system of PDE."

