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4 Instead, consider geometries A
(M, G)
_ smooth manifold J \ any tensor field Y

Can such geometries provide spacetime kinematics?
Yes, but not all.

Predictivity and guantizability of matter dynamics
impose powerful restrictions on geometry .

Can one infer their gravitational dynamics?
Yes.

Dynamics determined for all restricted geometries.
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Geometry must be bi-hyperbolic to carry matter.
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Example One

Maxwell theory — (M, G(”)) «— metric geometry

_—
contrain \Lcalculate

principal polynomial
PGab _ gab
predictive hyperbolic

contrainT\Lcalculate

projective dual

PZ".}&ab = Gab
quantizable hyperbolic

Metric must be of special algebraic class to carry Maxwell
(Lorentzian)
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Example Two

Maxwell theory — (M, G["]["])%area metric geometry

contrain \Lcalculate

principal polynomial

Bt — ¢ o arlaghl-legel-
hyperbolic

contrainT\Lcalculate

projective dual

hyperbolic

Area metric must be of special algebraic class to carry Maxwell
(6 out of 23)
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Bi-hyperbolic spacetime kinematics

massless " Gauss OP(k)
momenta ¢ _ . Ok,

contain all
kinematical
information
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Devising consistent

gravitational dynamics for bi-hyperbolic spacetimes*

[Hojman, Kuchar, Teitelboim, Ann Phys 197]
[Raetzel, Rivera, FPS, PRD 2011]

representing the deformation algebra

I [Giesel, FPS, Witte, Wohlfarth, PRD 2012]

solving a
linear homogeneous PDE system.

for the coefficients
(in a series expansion of

the Legendre transform of) I/piece of cake\
Ham = (Nﬁlocal[q, 7T) + Nﬁnon-local[q, W] + NQﬁ[Q: W])

,All info about modified gravity is encoded in one linear system of PDE.”







