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Basic concepts and notation

Let S denote a closed marginally outer trapped surface
(MOTS) in the spacetime (V, g).

This means that the (outer) null expansion vanishes θ~k = 0.
Here, the two future-pointing null vector fields orthogonal to S
are denoted by ~̀ and ~k and we set `µkµ = −1.

The mean curvature vector is therefore null: ~H = −θ`~k. If in
addition it is future-pointing everywhere on S (⇐⇒ θ` ≤ 0)
the surface is marginally trapped (MTS).
I will also use the concept of OTS (θk < 0 ) and of TS
(θk < 0 and θ` < 0).
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The stability operator for MOTS

As proven in (Andersson-Mars-Simon , Adv. Theor. Math. Phys. 12 (2008) 853 ),
the variation of the vanishing expansion δf~nθ~k along any
normal direction f~n such that kµnµ = 1 reads

δf~nθ~k = −∆Sf + 2sB∇Bf +

f

(
KS − sBsB +∇BsB − Gµνk

µ`ν |S −
nρnρ

2
W

)
(1)

Here KS is the Gaussian curvature on S, ∆S its Laplacian,
Gµν the Einstein tensor, ∇ the covariant derivative on S,
sB = kµe

σ
B∇σ`ρ (with ~eB the tangent vector fields on S), and

W ≡ Gµνk
µkν |S + σ2 (2)

with σ2 the shear scalar of ~k at S.
Note that the direction ~n is selected by fixing its norm:

~n = −~̀+
nµn

µ

2
~k (3)

Observe also that the causal character of ~n is unrestricted.
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Scheme for the variation direction

S

~k~̀

~n

~n

~n



Notice that W ≥ 0 if Gµνkµkν |S ≥ 0 (for instance if NCC
holds). Under this hypothesis, W = 0 can only happen if
Gµνk

µkν |S = σ2 = 0. This leads to Isolated Horizons, and I
shall assume W > 0 throughout.

The righthand side in formula (1) defines a differential
operator L~n acting (linearly) on the function f :

δf~nθ~k ≡ L~nf

L~n is an elliptic operator on S, called the stability operator for
the MOTS S in the normal direction ~n.
L~n is not self-adjoint in general. Nevertheless, it has a real
principal eigenvalue λ~n, and the corresponding (real)
eigenfunction can be chosen to be positive on S.
The (strict) stability of the MOTS S is ruled by the
(positivity) non-negativity of λ~n.



Notice that W ≥ 0 if Gµνkµkν |S ≥ 0 (for instance if NCC
holds). Under this hypothesis, W = 0 can only happen if
Gµνk

µkν |S = σ2 = 0. This leads to Isolated Horizons, and I
shall assume W > 0 throughout.
The righthand side in formula (1) defines a differential
operator L~n acting (linearly) on the function f :

δf~nθ~k ≡ L~nf

L~n is an elliptic operator on S, called the stability operator for
the MOTS S in the normal direction ~n.
L~n is not self-adjoint in general. Nevertheless, it has a real
principal eigenvalue λ~n, and the corresponding (real)
eigenfunction can be chosen to be positive on S.
The (strict) stability of the MOTS S is ruled by the
(positivity) non-negativity of λ~n.



Notice that W ≥ 0 if Gµνkµkν |S ≥ 0 (for instance if NCC
holds). Under this hypothesis, W = 0 can only happen if
Gµνk

µkν |S = σ2 = 0. This leads to Isolated Horizons, and I
shall assume W > 0 throughout.
The righthand side in formula (1) defines a differential
operator L~n acting (linearly) on the function f :

δf~nθ~k ≡ L~nf

L~n is an elliptic operator on S, called the stability operator for
the MOTS S in the normal direction ~n.

L~n is not self-adjoint in general. Nevertheless, it has a real
principal eigenvalue λ~n, and the corresponding (real)
eigenfunction can be chosen to be positive on S.
The (strict) stability of the MOTS S is ruled by the
(positivity) non-negativity of λ~n.



Notice that W ≥ 0 if Gµνkµkν |S ≥ 0 (for instance if NCC
holds). Under this hypothesis, W = 0 can only happen if
Gµνk

µkν |S = σ2 = 0. This leads to Isolated Horizons, and I
shall assume W > 0 throughout.
The righthand side in formula (1) defines a differential
operator L~n acting (linearly) on the function f :

δf~nθ~k ≡ L~nf

L~n is an elliptic operator on S, called the stability operator for
the MOTS S in the normal direction ~n.
L~n is not self-adjoint in general. Nevertheless, it has a real
principal eigenvalue λ~n, and the corresponding (real)
eigenfunction can be chosen to be positive on S.

The (strict) stability of the MOTS S is ruled by the
(positivity) non-negativity of λ~n.



Notice that W ≥ 0 if Gµνkµkν |S ≥ 0 (for instance if NCC
holds). Under this hypothesis, W = 0 can only happen if
Gµνk

µkν |S = σ2 = 0. This leads to Isolated Horizons, and I
shall assume W > 0 throughout.
The righthand side in formula (1) defines a differential
operator L~n acting (linearly) on the function f :

δf~nθ~k ≡ L~nf

L~n is an elliptic operator on S, called the stability operator for
the MOTS S in the normal direction ~n.
L~n is not self-adjoint in general. Nevertheless, it has a real
principal eigenvalue λ~n, and the corresponding (real)
eigenfunction can be chosen to be positive on S.
The (strict) stability of the MOTS S is ruled by the
(positivity) non-negativity of λ~n.



Spherically symmetric spacetimes as a Lab for L~n

In advanced coordinates

ds2 = −e2α

(
1− 2m(v, r)

r

)
dv2 + 2eαdvdr + r2dΩ2

For each round sphere S ≡ {r, v} =consts., the future null
normals are

~̀= −e−α∂r, ~k = ∂v +
1

2

(
1− 2m

r

)
eα∂r

Their mean curvature vector ~Hsph:

~Hsph =
2

r

(
e−α∂v +

(
1− 2m

r

)
∂r

)
.

The null expansions:

θsph~k
=
eα

r

(
1− 2m

r

)
, θsph~̀ = −2e−α

r
.
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The spherically symmetric MTT: A3H

A3H : r − 2m(r, v) = 0 (⇔ θsph~k
= 0)

The round spheres are untrapped iff r > 2m, and trapped iff
r < 2m.
One can prove (Bengtsson & JMMS 2011) that

1 A3H is actually the only spherically symmetric MTT : the only
hypersurface foliated by MTSs —be they round spheres or not.

2 Any closed trapped surface cannot be fully contained in a
region with r > 2m.

3 Thus, all possible closed trapped surfaces must intersect the
region with r < 2m.

However, how much must a TS penetrate into {r < 2m}?
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The stability operator at work

Let ς ⊂ A3H be any MT round sphere with r = rς =const.

The variation along a normal direction f~n simplifies drastically
in this case, because σ2 = 0 (i.e., shear-free too) and sB = 0.
In other words, most of the terms in the variation formula
vanish and the variation of the zero null expansion is given by

δf~nθ
sph
~k

= −∆ςf + f

(
1

r2
ς

−Gµνkµ`ν −
1

2
nρn

ρGµνk
µkν
)

selecting f =constant this informs us that the vector ~n such
that the red expression vanishes produces no variation on θsph~k

,
meaning that ~n is tangent to the A3H simply leading to other
marginally trapped round spheres on A3H.
Let us call such a vector field ~m, so that ~m = −~̀+

mµmµ

2
~k

with
1

r2
ς

− Gµνk
µ`ν |ς −

mρm
ρ

2
Gµνk

µkν
∣∣∣∣
ς

= 0

characterizes A3H.
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A helpful picture

~k~̀

A3H A3H~m

~n

~n



Deformations on A3H\A3Hiso

Consider now the parts of A3H with Gµνkµkν > 0. From the
helpful figure we deduce that the perturbation along f~n will
enter into the region with trapped round spheres at points with

f(nµn
µ −mµm

µ) > 0.

For easy control of these signs we note that

(Gρσk
ρkσ|ς) f(nµn

µ −mµm
µ) = −2(∆ςf + δf~nθ

sph
~k

) (4)

In order to construct examples of TSs which lie partly in
{r > 2m}, let us consider perturbations such that

nµn
µ −mµm

µ > 0.

For this choice the deformed surface enters the region
{r < 2m} at points with f > 0.
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TSs entering {r > 2m}
Now set f ≡ a0 + f̃ for some as yet undetermined function f̃
and a constant a0. Equation (4) becomes

(Gρσk
ρkσ|ς)(a0 + f̃)(nµn

µ −mµm
µ) = −2(∆ς f̃ + δf~nθ

sph
~k

).

This can be split into two parts

(Gρσk
ρkσ|ς) a0(nµn

µ −mµm
µ) + 2δf~nθ

sph
~k

= 0

1

2
(Gρσk

ρkσ|ς)(nµnµ −mµm
µ) = −∆ς f̃

f̃
> 0.

By our assumptions the first of these implies that δf~nθ
sph
~k

< 0

if a0 > 0, so that the deformed surface will be trapped.
The second is a (mild) restriction on the function f̃ . A simple
solution is to choose f̃ to be an eigenfunction of the Laplacian
∆ς , say

f̃ = clPl

for a fixed l ∈ N and constant cl (Pl = Legendre polynomials).
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How much must a TS lie inside {r < 2m}?

We are ready to answer the question of how small the fraction
of any closed trapped surface that extends outside {r < 2m}
can be made.

We aim to produce a C2 function f̃ defined on the sphere and

1 obeying the inequality −∆ς f̃

f̃
> 0

2 positive only in a region that we can make arbitrarily small.

If we choose a sufficiently small constant a0 the last
requirement implies that the region where the surface extends
outside {r > 2m} can be made arbitrarily small.
To find such a function it is convenient to introduce
stereographic coordinates {ρ, ϕ} on the sphere, so that the
Laplacian takes the form

∆ς = Ω−1

(
∂2
ρ +

1

ρ
∂ρ +

1

ρ2
∂2
ϕ

)
, Ω =

4r2
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(1 + ρ2)2
.
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An explicit solution to the problem

A solution to the problem as stated is the axially symmetric
function

f̃(ρ) =


c1

(
e

1
2a

(2a−ρ2) − 1
)

ρ2 < 4a

8c1a
e

1
ρ2
− c1(1 + e−1) ρ2 > 4a .

(5)

This function is C2 (and can be further smoothed if
necessary), and it is positive only if ρ2 < 2a, that is on a disk
surrounding the origin (the pole) whose size can be chosen at
will.
The function obeys

−∆ς f̃

f̃
=


Ω−1

a2
2a−ρ2

1−e− 1
2a (2c−ρ2)

ρ2 < 4a

32aΩ−1

ρ4
ρ2

(e+1)ρ2−8a
, ρ2 > 4a .

This is always larger than zero.
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A surprising theorem

Thus we have proven the following important result.

Theorem (Bengtsson & JMMS 2011)

In spherically symmetric spacetimes, there are closed f-trapped
surfaces (topological spheres) penetrating both sides of the
apparent 3-horizon A3H\A3Hiso with arbitrarily small portions
outside the region {r > 2m}.



The future-trapped region T and its boundary B

The future-trapped region T

is defined as the set of points x ∈ V such that x lies on a closed
(future) TS.

This is a space-time concept, not to be confused with the (outer)
trapped region within spacelike hypersurfaces, which is defined as
the union of the interiors of all (bounding) OTS in the given
hypersurface.

The boundary B

We denote by B the boundary of the future trapped region T :

B ≡ ∂T

One of the mysteries concerning closed TSs is: where is B? But
this is another story....
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Non-locality and clairvoyance of TSs

Closed TSs are clairvoyant , highly non-local objects. They
cross MTTs and even enter flat portions of the space-time.

In conjunction with the non-uniqueness of MTTs, this poses a
fundamental puzzle for the physics of black holes.
Although several solutions can be pursued, the most natural
and popular one is trying to define a preferred dynamical
horizon or MTT. Hitherto, though, there has been no good
definition for that.
We have put forward a novel strategy. The idea is based on
the simple question:
what part of the spacetime is absolutely indispensable for the
existence of the black hole?
Surely enough, any flat region is certainly not essential for the
existence of the black hole.
What is?
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The Core of the trapped region

Definition
A region Z is called the core of the f-trapped region T if it is a
minimal closed connected set that needs to be removed from the
spacetime in order to get rid of all closed f-trapped surfaces in T ,
and such that any point on the boundary ∂Z is connected to
B = ∂T in the closure of the remainder.

Here, “minimal" means that there is no other set Z ′ with the
same properties and properly contained in Z .
The final technical condition states that the excised space-time
(V\Z , g) has the property that ∀x ∈ V\Z ∪ ∂Z there is
continuous curve γ ⊂ V\Z ∪ ∂Z joining x and B (γ can
have zero length if B ∩ ∂Z 6= ∅).
This is needed because one could identify a particular
removable region, excise it, but then put back a tiny isolated
portion to make it smaller. However, this is not what one
wants to cover with the definition.
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Cores are not unique.

This example also proves that Z is not unique: one can
choose any other region Z equivalent to the chosen one by
moving all its points by the group of symmetries on each
homogeneous slice.

Actually this kind of non-uniqueness is rather trivial, and is due
to the existence of a high degree of symmetry.
Nevertheless, even in less symmetric cases the uniqueness of
the cores Z cannot be assumed beforehand. Actually, we have
proven that it does not hold in general (see below).
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Cores in spherical symmetry

Result (Bengtsson & JMMS , 2011 )

The region Z ≡ {r ≤ 2m} is a core.

Of course, the proof of this theorem is founded essentially in the
previous result of fitting TSs with tiny portions inside {r < 2m}.

Result
In spherically symmetric spacetimes, Z = {r ≤ 2m} are the only
spherically symmetric cores of T . Therefore, ∂Z = A3H are the

only spherically symmetric boundaries of a core.
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Non-spherically symmetric cores

Proposition
There exist non-spherically symmetric cores of the f-trapped region
in spherically symmetric spacetimes.

Still, the identified core Z = {r ≤ 2m} might be unique in
the sense that its boundary ∂Z = A3H is a MTT.

This would happen if any MTT H other than A3H is such
that its causal future J+(H) is not a core —the core being a
proper subset of J+(H).
Then A3H would be selected as the unique MTT which is the
boundary of a core of the f-trapped region T .
Whether or not this happens is a very interesting open
question.
It should be observed that the concept of core is global, and
requires full knowledge of the future. However, AH is local and
can be defined and identified by observing just around it. How
can then A3H = ∂Z ?
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Back to the general case

Recall the stability operator:

L~nf = −∆Sf + 2sB∇Bf +

f

(
KS − sBsB +∇BsB − Gµνk

µ`ν |S −
nρnρ

2
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)

Consider the operators with a similar structure (z ∈ C∞(S))

Lzf = −∆Sf + 2sB∇Bf + zf .

Lz has a principal real eigenvalue λz —which depends on z—
and the corresponding eigenfunction φz > 0.
The variation of θ~k = 0 along the direction φz~n becomes
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Many MOTTs through a given MOTS

Thus, whenever W 6= 0 on S, one can choose for any z a
variation vector ~mz = −~̀+Mz

~k with

Mz =
mρ
zmzρ

2
=

1

W

(
λz − z +KS − sBsB +∇BsB − Gµνk

µ`ν |S
)

(6)
such that δφz ~mz θ~k = 0.

Observe that this ~mz depends on the chosen function z.
The general variation of θ~k along ~mz reads

δf ~mz θ~k = −∆Sf + 2sB∇Bf + f(z − λz) = (Lz − λz)f (7)

so that the stability operator L~mz of S along ~mz is simply
Lz − λz which obviously has a vanishing principal eigenvalue.
The directions ~mz define locally MOTTs including any given
stable MOTS S —due to a result in (Andersson-Mars-Simon 2005 ).
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Many different MOTTs

These MOTTs will generically be different for different z. In
fact, given that ∀z1, z2 ∈ C∞(S)

~mz1 − ~mz2 =
1

W
(λz1 − z1 − λz2 + z2)~k

one can easily prove that

~mz1 = ~mz2 ⇐⇒ z1 − z2 = const.

Now, for any given z rewrite δf~nθ~k = L~nf using (6) so that

W

2
f (nρnρ −mρ

zmzρ) = (Lz − λz)f − δf~nθ~k (8)
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A formula for the principal eigenvalue

For any given z one easily gets∮
S
Lzf =

∮
S

(
2sB∇Bf + zf

)
=

∮
S

(
z − 2∇BsB

)
f

in particular for the principal eigenfunction

λz

∮
S
φz =

∮
S

(
z − 2∇BsB

)
φz

This provides

1 a formula for the principal eigenvalue

λz =

∮
S

(
z − 2∇Bs

B
)
φz∮

S
φz

. (9)

2 bounds for λz

min
S

(
z − 2∇Bs

B
)
≤ λz ≤ max

S

(
z − 2∇Bs

B
)
. (10)

3 and that λz −
(
z − 2∇Bs

B
)
must vanish somewhere on S for

all z ∈ C∞(S).
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A distinguished MOTT

Consider the particular function

z = 2∇BsB

This defines what I guess can lead to a preferred M(O)TT,
being a natural candidate for boundary of a core.

For such a choice let

1 L = L2∇BsB ,
2 µ its principal eigenvalue,
3 and φ > 0 the corresponding eigenfunction.

Observe that

Lf = −∆Sf + 2∇B(fsB) = −∇B
(
∇Bf − 2fsB

)
.

The principal eigenvalue µ vanishes. Indeed, this follows
immediately from either (9) or (10). Also from∮

S
Lf = 0 ∀f ,=⇒

∮
S
Lφ = µ

∮
S
φ = 0
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A distinguished MOTT

For this particular choice z = 2∇BsB, (8) reduces to
W

2
f (nρnρ −mρmρ) = Lf − δf~nθ~k (11)

where now the vector ~m = −~̀+
mρmρ

2
~k is defined by

mρmρ

2
=

1

W

(
KS −∇BsB − sBsB − Gµνk

µ`ν |S
)

as follows from (6).

For any other direction ~mz defining a local M(O)TT
W

2
(mρ

zmzρ −mρmρ) = λz − (z − 2∇BsB)

Result
The local M(O)TT defined by the direction ~m is such that any
other nearby local M(O)TT must interweave it with non-trivial
intersections to both of its sides, that is to say, the vector ~mz − ~m
changes sign on any of its M(O)TSs.
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What about Cores?

We try to follow the same steps as in spherical symmetry.

Thus, the idea is to start with a function

f = a0φ+ f̃

for a constant a0 > 0 so that, as φ > 0 has eigenvalue µ = 0,
(11) becomes

W

2
(a0φ+ f̃) (nρnρ −mρmρ) = Lf̃ − δf~nθ~k

This can be split into two parts:

W

2
a0φ (nρnρ −mρmρ) = −δf~nθ~k (12)

W

2
f̃ (nρnρ −mρmρ) = Lf̃ (13)

Eq.(12) tells us that δf~nθ~k < 0 whenever ~n points “above” ~m
if a0 > 0 is chosen.
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What about Cores?

Therefore, using (13) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that

1 Lf̃/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.
This would certainly happen if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



What about Cores?

Therefore, using (13) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that

1 Lf̃/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.
This would certainly happen if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



What about Cores?

Therefore, using (13) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that
1 Lf̃/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.
This would certainly happen if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



What about Cores?

Therefore, using (13) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that
1 Lf̃/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.
This would certainly happen if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



What about Cores?

Therefore, using (13) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that
1 Lf̃/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.
This would certainly happen if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



What about Cores?

Therefore, using (13) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that
1 Lf̃/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.

This would certainly happen if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



What about Cores?

Therefore, using (13) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that
1 Lf̃/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.
This would certainly happen if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



The case when L has real eigenvalues

Result
If the operator L has any real eigenvalue other than the principal
one µ = 0, then the conditions 1 and 2 do hold for the
corresponding real eigenfunction. This leads to the existence of
closed OTSs penetrating both sides of the local M(O)TT.

Proof. Any real eigenvalue is strictly positive (as µ = 0). Hence,
the corresponding eigenfunction must change sign on S, because
integration of Lψ = λψ on S implies

∮
ψ = 0.

However, even if there are no other real eigenvalues the result
might hold.
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