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1 Introduction: Do the singular-
ities predict the breakdown of
General Relativity?

It is often said that General Rela-
tivity predicts its own breakdown,
by predicting the occurrence of sin-
gularities. In addition, when trying
to quantize gravity, it appears to be
perturbatively nonrenormalizable.
• Are these problems signs that we should give up

General Relativity in exchange for more radical ap-
proaches (superstrings, loop quantum gravity etc.)?

• Are these limits of GR, or of our tools?

• What if understanding the singularities also helps
with the problem of quantization?1

2 The cure for singularities

2.1 Singular semi-Riemannian geometry

The methods of singular semi-Riemannian geometry
(see [2, 3] and the appendix) allow us to:

• find mathematical descriptions of singularities,
and understand them • replace the singular quanti-
ties with regular ones, which are equivalent to them
if det g 6= 0 • write non-singular field equations, for
example extensions of Einstein’s equations

2.2 Singular General Relativity

Singular General Relativity is the application of the
methods of singular semi-Riemannian geometry to
General Relativity. For this, the metric is required
to be benign, but often a metric which is apparently
malign can be put in a form which is benign, by a
coordinate change.

• Malign singularity : gab →∞. Benign singularity :
g is smooth and det g = 0.

1Usually is considered that when GR will be quantized, this
will solve the singularities too, by showing probably that quan-
tum fields prevent the occurrence of singularities. Here we will
explore the opposite view.

3 Results: Smoothening black hole
singularities

Apparently, the black hole singularities are malign,
because some of the components of the metric are
divergent (gab → ∞). For the standard stationary
black holes, we can find transformations of coordi-
nates which make them smooth. This also makes, for
charged black holes, the electromagnetic potential and
field smooth. The metric is put in a form which allows
the evolution equations to go beyond the singularities.

Malign singularities

gab →∞
Benign singularities

gab smooth, det g → 0

3.1 Schwarzschild black hole

In Schwarzschild coordinates

ds2 = −r − 2m

r
dt2 +

r

r − 2m
dr2 + r2dσ2,

where dσ2 = dθ2 + sin2 θdφ2.

In non-singular coordinates [5]

ds2 = − 4τ4

2m− τ2
dτ2

+(2m− τ2)τ2T−4 (Tξdτ + τdξ)2 + τ4dσ2,

where (r, t) 7→ (τ2, ξτT ), T ≥ 2.

3.2 Reissner-Nordström black hole

In Reissner-Nordström coordinates

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dσ2

where ∆ = r2 − 2mr + q2.

The electromagnetic potential is singular:

A = −q
r

dt

In non-singular coordinates [6]

ds2 = −∆ρ2T−2S−2 (ρdτ + Tτdρ)2

+
S2

∆
ρ4S−2dρ2 + ρ2Sdσ2,

where (t, r) 7→ (τρT , ρS), T > S ≥ 1.

The electromagnetic potential is non-singular:

A = −qρT−S−1 (ρdτ + Tτdρ)
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4 Information paradox

Penrose-Carter diagrams for non-rotating and electri-
cally neutral evaporating black holes.

A. If the singularity is malign, entering information
is lost. When accounting for Quantum Mechanics, this
causes in particular a violation of unitarity, if a system
which is entangled with another system is lost in the
singularity. B. If the singularity is benign, the field
equations can be extended beyond the singularity, and
the information is preserved [5–8].

5 Einstein equation at singularities

Singular semi-Riemannian geometry (see appendix
and [2,3]) introduces generalizations of semi-Riemann-
ian spacetimes which admit degenerate metric but
have smooth Riemann curvature Rabcd. But the Ein-
stein tensor is usually singular. Yet, in 4D we can
rewrite the Einstein equation in terms of quantities
which remain smooth at singularities. The resulting
equations are equivalent to Einstein’s so long as the
metric is regular, but work as well at singularities.

5.1 Densitized Einstein equation

On 4D semi-regular spacetimes the Riemann curvature
Rabcd is smooth. Hence the Einstein tensor density
Gdet g is smooth too, being:

Gab det g = gklεa
kstεn

lpqRstpq.

We can write a densitized version of the Einstein equa-
tion:

Gab det g + Λgab det g = κTab det g,

For regular metric it is equivalent to Einstein’s equa-
tion, but works at singularities too [2].

5.2 Expanded Einstein equation

A quasi-regular spacetime is a 4D semi-regular mani-
fold with smooth Ricci decomposition

Rabcd =
1

12
R(g ◦ g)abcd +

1

2
(S ◦ g)abcd + Cabcd

where Sab := Rab − 1
4Rgab, and

(h ◦ k)abcd := hackbd − hadkbc + hbdkac − hbckad.

In this case we can write the expanded Einstein equa-
tion [11]:

(G ◦ g)abcd + Λ(g ◦ g)abcd = κ(T ◦ g)abcd.

The FLRW spacetime is the warped product I×aΣ,
a : I → R, a ≥ 0, with metric

ds2 = −dt2 + a2(t)dΣ2

where usually Σ is S3,R3, or H3 [3].
The energy density ρ and pressure density p are sin-
gular at the Big-Bang, where a(t) = 0:

ρ =
3

κ

ȧ2 + k

a2
, ρ+ 3p = −6

κ

ä

a
.

But in terms of the correct densities

ρ̃ = ρ
√
−g, p̃ = p

√
−g,

the equations become smooth:

ρ̃ =
3

κ
a
(
ȧ2 + k

)√
gΣ, 3p̃+ ρ̃ = −6

κ
a2ä
√
gΣ.

Hence, ρ̃ and p̃ are smooth, as it is the densitized
stress-energy tensor

Tab
√
−g = (ρ̃+ p̃)uaub + p̃gab.

These singularities are quasi-regular [9, 10].

6 Weyl curvature hypothesis

The Weyl curvature hypothesis was proposed by R.
Penrose, to account for the high homogeneity and low
entropy characterizing the Big-Bang. It states that at
the Big-Bang singularity, the Weyl curvature tensor
Cabcd = 0.

At a quasi-regular Big-Bang singularity, Cabcd is
smooth. At the singularity it vanishes, because it lives
in T •M , which has dimension ≤ 3 at singularities [12].
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7 Dimensional reduction
and Quantum Gravity

Different results suggest that a dimension < 4 may act
like a dimensional regulator for QFT and for QG. In
lower dimension, the Weyl tensor vanishes, and the lo-
cal degrees of freedom (gravitational waves and gravi-
tons) disappear, allowing QG to be renormalizable.

Benign singularities undergo a dimensional reduc-
tion, and may be the needed dimensional regularizers
for QG:
• gab is independent on some directions.
•
√
−det g → 0, reducing the contribution of lower

distance Feynman integrals.
• The admissible fields live in lower dimension spaces:

rank gp = dimTp•M = dimTp
•M < 4.

• For quasi-regular singularities Cabcd = 0.
The quantities det g and Cabcd vanish as approaching

singularities. But QG needs them to decrease with the
scale. They may do this:

As the energy approaches the UV limit, the num-
ber of the particles in Feynman diagrams increases.
If particles are benign singularities, this means lower
det g and Cabcd. We conjecture: this gives the needed
regularization [13].

A Singular semi-Riemannian
Geometry

• A singular semi-Riemannian manifold (M, g) is a
differentiable manifold M with a symmetric bilinear
form g, named metric, on the tangent bundle TM .
The metric g may be indefinite, and may be degenerate
(i.e. det g = 0 at some points). It may have constant
or variable signature.
• Malign singularity : gab →∞. Benign singularity :

g is smooth and det g = 0.

A.1 The problem

The geometric quantities can’t be defined:

Γc
ab =

1

2
gcs(∂agbs + ∂bgsa − ∂sgab)

Rd
abc = Γd

ac,b − Γd
ab,c + Γd

bsΓ
s
ac − Γd

csΓ
s
ab

Rab = Rs
asb, R = gpqRpq

Gab = Rab −
1

2
Rgab

These quantities are not usually defined even if gab are
finite, since gab →∞ when det g → 0.

A.2 The idea of a solution

Use non-singular quantities, equivalent to the singular
ones for non-degenerate metric g.

Singular Non-Singular When g is...

Γc
ab (2nd) Γabc (1st) smooth

Rd
abc Rabcd semi-regular

Rab Rab

√
|det g|W , W ≤ 2 semi-regular

R R
√
| det g|W , W ≤ 2 semi-regular

Rab Ric ◦ g quasi-regular

R Rg ◦ g quasi-regular

But how to define them?

A.3 Degenerate metric and
covariant contraction

(V,g) V*

u
u+w

w (V●,g●)

(V●,g●)V●=V/V○

u●

(V, g) is an inner product vector space. The mor-
phism [ : V → V ∗ is defined by u 7→ u• := [(u) =
u[ = g(u, ). The radical V ◦ := ker [ = V ⊥ is the
set of isotropic vectors in V . V • := im [ ≤ V ∗ is
the image of [. The inner product g induces on V •

an inner product defined by g•(u
[
1, u

[
1) := g(u1, u2),

which is the inverse of g iff det g 6= 0. The quotient
V • := V/V ◦ consists in the equivalence classes of the
form u + V ◦. On V •, g induces an inner product
g•(u1 + V ◦, u2 + V ◦) := g(u1, u2).
• Once we have defined the reciprocal inner product

g•(ω, τ), we can define covariant contraction for
1-forms from V •. Then we define it for tensors with
two covariant indices living in V •.

T (ω1, . . . , •, . . . , •, . . . , ωk)

• We extend these definitions to a singular semi-Rie-
mannian manifold (M, g).

0 T◦pM (TpM, g) (V •, g
•) 0

0 T◦
pM T∗

pM (T•
pM, g•) 0

i◦ π•

π◦

[
T
pM

i•

[ ]
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A.4 Covariant derivative

• The covariant derivative ∇XY can’t be defined. We
can use instead the Koszul form:

K(X,Y, Z) :=
1

2
{X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
−〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉}

• For non-degenerate metric ∇XY = K(X,Y, )].
• The Christoffel’s symbols of the first kind are

Γabc = K(∂a, ∂b, ∂c) =
1

2
(∂agbc + ∂bgca − ∂cgab)

• The lower covariant derivative:
(∇[

XY )(Z) := K(X,Y, Z), for any Z ∈ X(M).
A singular semi-Riemannian manifold is radical-
stationary if K(X,Y, ) ∈ A•(M) := Γ(T •M).
• Covariant derivative of covariant indices:
(∇Xω) (Y ) := X (ω(Y ))− g•(∇[

XY, ω)

(∇XT ) (Y1, . . . , Yk) = X (T (Y1, . . . , Yk))

−
∑k

i=1K(X,Yi, •)T (Y1, , . . . , •, . . . , Yk)
• A singular semi-regular manifold is a radical-

stationary manifold so that ∇X∇[
Y Z ∈ A•(M).

• Isotropic singularities. A manifold (M,Ω2g̃), where
g̃ is a non-degenerate metric, and Ω a smooth function,
is semi-regular.

A.5 Curvature

Let (M, g) be radical-stationary.
• The lower Riemann curvature operator is:
R[

XY Z := ∇X∇[
Y Z −∇Y∇[

XZ −∇[
[X,Y ]Z

• The Riemann curvature tensor is:
R(X,Y, Z, T ) := (R[

XY Z)(T )
Rabcd = ∂aΓbcd − ∂bΓacd + (Γac•Γbd• − Γbc•Γad•)
• The Ricci tensor: Ric(X,Y ) := R(X, •, Y, •)
• The scalar curvature s := Ric(•, •).
• If (M, g) is semi-regular, the Riemann curvature

is a smooth tensor field, but the Ricci and scalar cur-
vatures may be singular.

A.6 Singular warped products

The warped product of two singular semi-Riemannian
manifolds (B, gB) and (F, gF ), with warping function
f ∈ F (B) is the singular semi-Riemannian manifold

B ×f F :=
(
B × F, π∗B(gB) + (f ◦ πB)π∗F (gF )

)
,

where πB : B × F → B and πF : B × F → F are the
canonical projections.

The inner product on B ×f F takes the form

ds2 = ds2
B + f2ds2

F .

The usual definition of warped product requires
(B, gB) and (F, gF ) to be non-degenerate, and f > 0.
Here we allow it to be f ≥ 0, including by this possible
singularities.
• If (B, gB) and (F, gF ) are radical-stationary and

df ∈ A•(B), the warped product manifold B ×f F is
radical-stationary.
• If (B, gB) and (F, gF ) are semi-regular, and df ∈

A •1(B), the warped product manifold B×f F is semi-
regular.
• Example of warped product: the Friedmann-

Lemâıtre-Robertson-Walker spacetime.
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