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Dynamics of time-like geodesics in the static and axially symmetric field of a black hole surrounded by a thin disc or ring 1s studied in several different ways: on Poincaré’s
sections, on phase-variable behaviours and their power spectra, and by two recurrence methods. The geodesic motion turns chaotic 1f the disc/ring 1s sutficiently massive
and/or 1f the particle has sufficiently large energy. The occurrence of chaos due to the presence of ambient matter may be important for the evolution and appearance of

astrophysical black-hole systems.

Introduction

Observational knowledge concerning black holes comes from their interac-
tion with the surrounding matter. In theoretical models, this matter 1s usually
treated as non-gravitating (test). With the possible exception of neutron tori,
such an approximation 1s adequate as far as intensity of the field is con-
cerned. However, the derivatives of the field may well be dominated by ex-
ternal matter, which would affect the latter’s own stability and, consequently,
the very configuration it assumes. The additional matter would also perturb
the motion of (test) particles and light around. Here we study its influence on
geodesic motion, neglecting all the other possible effects coming from EM
fields, cosmological constant, higher multipoles of the test particles or their
radiation. The geodesic dynamics, originally completely regular in the pure
Schwarzschild field, grows chaotic when the external source (disc of ring) 1s
gradually being “switched on”. In the preceding work [5], this has been ob-
served on Poincaré’s surfaces of section and on phase-variable evolution and
power spectra, 1in exact space-times describing the fields of a Schwarzschild
black hole surrounded by several families of static and axially symmetric
annular thin discs or rings.

It 1s especially interesting to study the chaotic dynamics in spaces which are
themselves described by a non-linear theory like general relativity. At the
same time, some of the classical indicators of chaos (e.g. the Lyapunov and
related coefficients quantifying the rate of orbital-flow divergence) has to be
used with caution there since they rely on the existence of a unique global
time coordinate. Here we examine several other methods of recognising and
classifying chaos in the relativistic black-hole—disc systems (two different
recurrence methods, in particular) and compare their outcomes with what
has been observed on Poincaré’s diagrams and phase-variable power spectra.
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Fig. 1 Poincaré’s surface of sec-
tion colored with respected to
the value of DIV of the particu-
lar trajectories, the decadic log-
arithmic scale is used.

Bottom is given the dependency
of four RQA-quantites on the
chosen treshold € in the range
e = 0.5 (blue) to ¢ = 2 (red).
The analysis is computed for or-
bits launched with zero radial
velocity from » = 5M with the
step Ar = 0.05M. The results
of the recurrence analysis de-
pends on the proper choice of
the parameters, but the general
attributes could be seen in wide
range of parameters.
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Fig. 3 Comparison of the mentioned quantities computed for four different orbits (each row for one). In the first row we have
regular orbit belonging to the primary island. The other three orbits are parts of the orbit filling the big chaotic sea which differ
in how much chaos they exhibit during the time we follow them. In the first column we plot the respective Poincaré’s surfaces of
section revealing the degree of chaocity, on the next plot there is the dependency of the radial velocity " on ¢ at the moments of
the passages through the equatorial plane. In the third column the spectra of the coordinate z are given, the next column displays
A(AT) and in the last column are the recurrence plots.
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The simplest among the RQA quantifiers is the ratio of the recurrence points
(R (¢) = 1) within all points of the matrix, RR(c) = Zﬁfj:l R; i(e),
called recurrence rate. Another, most important quantifier is the histogram
of diagonal lines of a certain prescribed length [,

N

> (1= Ria(e)(1

i.j=1

P(e,l) =
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From (2) several further quantities could be computed:
DET = Zf\i L LP()/ Zf\i L lP(l) gives the ratio between all recurrence
points and those of them which lie at a diagonal line longer than [,,;,.

Luax = max({l;},) stands for the length of the longest diagonal line,

DIV = 1/ Ly is the inverse of this value.

Similarly, the histogram of vertical lines can be introduced,

N
P(€>U> = Z(l_R (5 2]+v HRZ]+]€ 3)
ij=1
the measure of vertical structures LAM = ZU o VP(V)/ Z _, vP(v).

From the probabilities that some chosen diagonal/vertical line has length
llv, p(I) = P(l)/N; and p(v) = P(v)/N,, where N; and N, are the total
numbers of diagonal/vertical lines, one can compute the Shannon entropies

ENTR =

N
=) p(l)Inp(l)
1=lin

Finally, we can compute the recurrence times given by differences between
serial numbers of the consecutive recurrence points in one column 7;, , ,,
7, multiplied by the respective proper-time step, {73 = (jr+1 — Jr) AT}
The mean of T}, is called the recurrence time of the first type, 7'1. In this
set there are also the recurrence points (sojourn points) resulting from the
tangential motion when ¢ is high enough to capture more successive points
of the trajectory. These points need to be discarded from the set in to order
to make the statistics only over the real recurrences, after which we get the

(2)

recurrence times of the second type 7,,”" and the mean value 7°2.

Recurrence analysis

Recurrence analysis 1s a powertful tool for discovering the traces of chaos which are hidden in the
time evolution of some dynamical quantity. Since 1987, when Eckmann et al. [1] invented the
recurrence plots (RPs), this method has been used to analyse the behaviour of nonlinear dynam-
ical systems in a very wide field of study, including physics, mathematics, financial markets and
medicine. Very recently this method was also used for detecting chaos in relativistic system of
charge particle moving around a magnetised rotating black hole [3].

The key feature for RP 1s the fact, that the patterns of recurrences of the motion are different for
random, chaotic and regular trajectories. The recurrences are encoded in the recurrence matrix

R@j(E) — @(8 Na (1)

— || Z; — %5 ||), 1,7 =1,...,
where ; = Z(t;) are (IV) points of the phase trajectory, € denotes a chosen threshold and © is
the Heaviside step function. This matrix could be visualised in the RP and reveals long diagonal
lines for regular motion and randomly scattered points for random processes. The diagonal lines
correspond to the situation, when the trajectory evolves in a very similar way like it did some time

ago, and are typical for the regular motion.

Number of quantifiers (called RQA) could be derived from this matrix which help us to find chaos
in a very effective way without the necessity to actually look at the resulting recurrence plots
(see [4]). Definitions of this RQA values are given in the box on the right. When we change
some parameters of the motion (e.g. the energy of the particle or the relative mass of the external
source), the dynamics could change its character abruptly from regular to chaotic and vice versa
which causes changes in the recurrence patterns of the trajectory. This fact is reflected by the
values of the quantifiers, so they are able to reveal changes in the dynamics.
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Fig. 2 Poincaré’s surface of
section colored with respected
to the value of DIV of the par-
ticular trajectories. The plotis
composed of hundreds of or-
bits.

On the right the course of six
RQA-quantities DET, DIV,

RATIO = DET/RR, V ENTR, o
LAM, and T2 is given for or-
bits launched with zero radial
velocity with the radial step
Ar = 0.04M (along the red
line). The big regular regions
could be seen in all pictures, .
the quantity DIV seems to be
most sensitive to small chaotic
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Average of directional vectors

Another method of post-processing the measured time series of some dynamical variable 1s computing the averaged directional vectors in the
reconstructed phase space. This procedure was brought in by Kaplan in [2] in 1992 to distinguish between deterministic and random data. It
lies in reconstructing the phase space from the time series by its shifting by a constant time interval A7 (in our case we use 3D embedding of

the particle’s z position, so the point in the phase space has the coordinates z(7),

z(T — A7) and z(7 — 2A7)), then dividing the phase space into

boxes and following the motion of the phase—space orbit through these boxes. Every time the trajectory crosses the (7-th) box, we record the
unit vector 1n the direction of this passage (pointing from the point where the trajectory enters the box to the point where it leaves it), then we
add all the vectors in one box and compute the resulting length |V;| divided by the number of passages through the box 7 ;. For some suitable
value of the time lag A7 the values of |V;/n ;| remain close to one with growing n for deterministic systems while it decreases with n as the
average displacement per step for a random walk 1n a 3D space for random processes, given by

But instead of studying the dependence on n we compute the weighted average through all boxes

_ A 1
R = 2 5
n; (67’(‘)1/2 ( )
§ (Vi/n;)* = (R;,.)?
Aar) = (== G ), (6)

and look at the dependence of this quantity on the chosen A7. For regular trajectories it remains close to one for almost all values of A7
except for some particular values connected with the orbital period of the motion. On the other hand for chaotic trajectories the deterministic
connection between the points fades away quickly with the growing time lag because of the strong dependence on initial condition 1n the chaotic
layer. Thus, the value A(AT) decreases with growing A1 more quickly for the very chaotic orbits and less quickly for the slightly chaotic orbits.

0.03 T

il
0.0Z2
I
i
I
I
I
I
{0
I
I
i

0.01 Iy
f

il
v i
S  0.00 i
il

[
—0.01
1
[
il
ul
i
il
—~0.02{

—0.03 L

2.0x10°

4.0x10°

t

6.0x10°

8.

0x10°

1.0x10°

1.2x10°

Concluding remarks

This work follow up with the previous paper [S], where
we studied the geodesic dynamics in the black-hole—disc
(or ring) field on Poincarés surfaces of section, on the be-
haviour of the “latitudinal action” and on phase-variable
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power spectra.

Here, we focus on particular trajectories in more detail
and turn to other two powerful (recurrence) methods for
comparison.

In particular, we 1llustrate the average-directional-vectors
method [2] with changing time lag A7 which deals with
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directions 1n which the orbit recurrently passes through
phase-space cells, and the method developed 1n [4] and
[7] which 1s based on statistics over the recurrences them-
selves. See [6] for further details; a more thorough paper
with a number of illustrations has been submitted.
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