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Outline

• Introduction

→ spin measurements by relativistic iron lines

→ radial emissivity in relativistic models of broad iron lines

→ steep radial emissivity in observations

• Origin of the steep radial emissivity

→ irradiation by a lamp-post corona

→ angular directionality

→ influence of radially dependent ionisation

• Conclusions



Energy shift and relativistic line profile

• kyrline (Dovčiak et al., 2004)

• inner edge of the disc coincides with the innermost stable circular orbit



Observed relativistic iron lines
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• Kα and L iron line in the XMM-Newton observation of narrow-line
Seyfert 1 galaxy 1H 0707-495 (Fabian et al., 2009)



Radial emissivity in the relativistic iron lines
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• radial dependence: R(re) ∝ r−q

e (or a broken power law)

• “standard” value q = 3 (∝ thermal dissipation of the accretion disc
in the isotropic corona, or Newtonian limit for a point source on the
rotational axis)



Steep radial emissivity in observations

• many observations of active galaxies and Galactic black hole binaries
require steep radial emissivity in the relativistic iron line profile than
expected (standard value q = 3, I(re) ∝ r−q

e )

• examples:

→ MCG -6-30-15: q1 = 4.8± 0.7, rbr = 6.5+4.5
−1.4 rg (Fabian et al., 2002)

→ 1H0707-495: q1 ≈ 7.5, rbr ≈ 4.5 rg (Fabian et al., 2009)

→ IRAS 13224-3809: q ≈ 5− 9 (Ponti et al., 2010)

→ XTE J1650-500, GX 339-4: q ≈ 5.5 (Miller et al., 2002, 2004)

→ Cyg X-1 (Duro et al., 2011, Fabian et al., 2012)

• possible explanations:

→ centrally localised corona (“lamp-post geometry”) (Matt et al., 1991,

Martocchia et al., 2000, Wilms et al., 2001, Wilkins et al., 2012)

→ usage of an improper emission directionality (Svoboda et al., 2009)

→ radially stratified ionisation (Svoboda et al., submitted)



Part I. Lamp-post geometry of the corona

• (point-like) source above the black hole (Dovčiak et al., before submission,

see also Wilkins et al. 12)

• radial emissivity: q ≡
d logNinc

d log r

→ differs from a broken power law, very steep only for h < 2 rg
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Radial emissivity in the lamp-post geometry
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• data simulated by a power law (Γ = 1.9) and relativistic iron line in the
lamp-post geometry with adef = 0.94, idef = 30deg and h = 1.5 rg

• then fitted by a model with the radial emissivity described as a broken
power-law (with q = 3 at the outermost disc)

• steep indices, q . 5, found in the inner disc (break radius rb ∼ 6 rg)



Part II. Emission directionality in reflected radiation

• emission directionality M(µe, re, Ee) = dependence of the intensity
on the emission angle (µe = cos θe)

M(µe) =



















ln(1 + µ−1
e ) limb brightening, Haardt 93

1 (locally isotropic emission)

1 + 2.06µe limb darkening, Laor 91
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Lamp-post geometry: incident angle and directionality

incident angle directionality
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• at the innermost region: grazing angles of irradiation

• “irradiation from above” occurs at a few gravitational radii

• directionality calculated using Monte-Carlo radiative transfer code
NOAR (Dumont et al., 00) for the case of “cold” reflection

• strong limb-brightening effect at the innermost region



The effect on radial emissivity and BH spin

limb brightening isotropic limb darkening
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• default parameters: a = 0.94, i = 30deg, h = 1.5 rg, and numerical
directionality (NOAR)

• model with limb darkening overestimates the radial emissivity

index as well as the spin value



Part III. Ionised reflection models

• photoionisation dominates in determining the ionisation state of plasma

• ionisation parameter: ξ =
4πFinc

nH

• reflionx (Ross & Fabian, 1993, 2005)

→ assumes constant density, no angular dependence



Radial dependence of the ionisation parameter ξ(r)

• currently: data are fitted using only one reflection component,
i.e. assuming ξ constant over the whole accretion disc

• but (!):
ξ(r) =

4πFinc(r)

nH(r)

• assuming Finc(r) ≈ r−3:
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Radially stratified ionisation model

• constant density disc, isotropic irradiation, a = 0.94, q = 3, R ≈ 1
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Fit with single ionisation model
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• best-fit results: χ2/ν ≈ 1.35, ξ = 310± 10 erg s−1, q = 4.2± 0.1

• residuals are at the iron line edge (can be fitted by an additional narrow
line or may affect equivalent width measurements of a narrow iron line
from distant reflector often occuring in the spectra as well)

• radial emissivities q ≈ 4− 5 are obtained, i.e. similar values like with the
lamp-post model



Combined effect

• simulated data: lamp-post geometry with the height h = 1.5 rg,
isotropic angular emissivity, and the radially stratified ionisation
(with constant density profile)

• fit: single ionisation reflection with limb darkening

• best-fit results: χ2/ν ≈ 1.03, a = 0.94± 0.02, ξ = 230± 20 erg s−1,
q = 6.7± 0.9 (!)
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Conclusions

• relativistic iron lines in X-ray spectra are useful tools for investigation of
the innermost regions of black hole accretion discs

• steep radial emissivity in X-ray disc-reflection spectra may be due to:

→ centrally localised corona (Martocchia et al. 00, Wilkins et al. 12)

→ the employed definition of the angular distribution of the disc
emission (Svoboda et al. 09)

→ radially stratified ionisation (Svoboda et al. 12, submitted)

• very steep radial emissivities, such as q ≈ 7, can be naturally explained
by the combined result of all three effects
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Thanks a lot for your attention!
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