On the origin of X-ray disc-reflection steep radial emissivity

Outline

- Introduction
 - → spin measurements by relativistic iron lines
 - ightarrow radial emissivity in relativistic models of broad iron lines
 - → steep radial emissivity in observations
- Origin of the steep radial emissivity
 - \rightarrow irradiation by a lamp-post corona
 - → angular directionality
 - → influence of radially dependent ionisation
- Conclusions

Energy shift and relativistic line profile

- KYRLINE (Dovčiak et al., 2004)
- inner edge of the disc coincides with the innermost stable circular orbit

Observed relativistic iron lines

• K α and L iron line in the XMM-Newton observation of narrow-line Seyfert 1 galaxy 1H 0707-495 (Fabian et al., 2009)

Radial emissivity in the relativistic iron lines

- radial dependence: $\mathcal{R}(r_{\mathrm{e}}) \propto r_{\mathrm{e}}^{-q}$ (or a broken power law)
- "standard" value q=3 (\propto thermal dissipation of the accretion disc in the isotropic corona, or Newtonian limit for a point source on the rotational axis)

Steep radial emissivity in observations

• many observations of active galaxies and Galactic black hole binaries require steep radial emissivity in the relativistic iron line profile than expected (standard value q=3, $I(r_{\rm e}) \propto r_{\rm e}^{-q}$)

• examples:

- \rightarrow MCG-6-30-15: $q_1 = 4.8 \pm 0.7$, $r_{\rm br} = 6.5^{+4.5}_{-1.4} r_{\rm g}$ (Fabian et al., 2002)
- ightarrow 1H0707-495: $q_1 \approx 7.5$, $r_{
 m br} \approx 4.5\,r_{
 m g}$ (Fabian et al., 2009)
- → IRAS 13224-3809: $q \approx 5 9$ (Ponti et al., 2010)
- ightarrow XTE J1650-500, GX 339-4: $q \approx 5.5$ (Miller et al., 2002, 2004)
- \rightarrow Cyg X-1 (Duro et al., 2011, Fabian et al., 2012)

possible explanations:

- → centrally localised corona ("lamp-post geometry") (Matt et al., 1991, Martocchia et al., 2000, Wilms et al., 2001, Wilkins et al., 2012)
- → usage of an improper emission directionality (Svoboda et al., 2009)
- → radially stratified ionisation (Svoboda et al., submitted)

Part I. Lamp-post geometry of the corona

- (point-like) source above the black hole (Dovčiak et al., before submission, see also Wilkins et al. 12)
- radial emissivity: $q \equiv \frac{\mathrm{d} \log N_{\mathrm{inc}}}{\mathrm{d} \log r}$
 - \rightarrow differs from a broken power law, very steep only for $h < 2 \, r_{
 m g}$

Radial emissivity in the lamp-post geometry

- data simulated by a power law ($\Gamma=1.9$) and relativistic iron line in the lamp-post geometry with $a_{\rm def}=0.94$, $i_{\rm def}=30\deg$ and $h=1.5\,r_{\rm g}$
- then fitted by a model with the radial emissivity described as a broken power-law (with q=3 at the outermost disc)
- steep indices, $q \lesssim 5$, found in the inner disc (break radius $r_{\rm b} \sim 6\,r_{\rm g}$)

Part II. Emission directionality in reflected radiation

• emission directionality $\mathcal{M}(\mu_e, r_e, E_e) =$ dependence of the intensity on the emission angle $(\mu_e = \cos \theta_e)$

$$\mathcal{M}(\mu_e) = \left\{ \begin{array}{l} \ln(1+\mu_e^{-1}) \quad \text{limb brightening, Haardt 93} \\ \\ 1 \quad \text{(locally isotropic emission)} \\ \\ 1+2.06\,\mu_e \quad \text{limb darkening, Laor 91} \end{array} \right.$$

Lamp-post geometry: incident angle and directionality

- at the innermost region: grazing angles of irradiation
- "irradiation from above" occurs at a few gravitational radii
- directionality calculated using Monte-Carlo radiative transfer code NOAR (Dumont et al., 00) for the case of "cold" reflection
- strong limb-brightening effect at the innermost region

The effect on radial emissivity and BH spin

- default parameters: $a=0.94,\ i=30\deg,\ h=1.5\,r_{\rm g}$, and numerical directionality (NOAR)
- model with limb darkening overestimates the radial emissivity index as well as the spin value

Part III. Ionised reflection models

- photoionisation dominates in determining the ionisation state of plasma
- ionisation parameter: $\xi = \frac{4\pi F_{\rm inc}}{n_{\rm H}}$
- REFLIONX (Ross & Fabian, 1993, 2005)
 - → assumes constant density, no angular dependence

Radial dependence of the ionisation parameter $\xi(r)$

• currently: data are fitted using only one reflection component, i.e. assuming ξ constant over the whole accretion disc

• but (!):
$$\xi(r) = \frac{4\pi F_{\rm inc}(r)}{n_{\rm H}(r)} \label{eq:xi}$$

• assuming $F_{\rm inc}(r) \approx r^{-3}$:

Radially stratified ionisation model

• constant density disc, isotropic irradiation, $a=0.94,\ q=3,\ R\approx 1$

Fit with single ionisation model

- best-fit results: $\chi^2/\nu \approx 1.35$, $\xi = 310 \pm 10 \, \mathrm{erg \, s^{-1}}$, $q = 4.2 \pm 0.1$
- residuals are at the iron line edge (can be fitted by an additional narrow line or may affect equivalent width measurements of a narrow iron line from distant reflector often occuring in the spectra as well)
- \bullet radial emissivities $q\approx 4-5$ are obtained, i.e. similar values like with the lamp-post model

Combined effect

- ullet simulated data: lamp-post geometry with the height $h=1.5\,r_{
 m g}$, isotropic angular emissivity, and the radially stratified ionisation (with constant density profile)
- fit: single ionisation reflection with limb darkening
- best-fit results: $\chi^2/\nu \approx 1.03$, $a = 0.94 \pm 0.02$, $\xi = 230 \pm 20 \, \mathrm{erg \, s^{-1}}$, $q = 6.7 \pm 0.9$ (!)

8

9

Conclusions

- relativistic iron lines in X-ray spectra are useful tools for investigation of the innermost regions of black hole accretion discs
- steep radial emissivity in X-ray disc-reflection spectra may be due to:
 - → centrally localised corona (*Martocchia et al. 00, Wilkins et al. 12*)
 - → the employed definition of the angular distribution of the disc emission (Svoboda et al. 09)
 - \rightarrow radially stratified ionisation (*Svoboda et al. 12, submitted*)
- very steep radial emissivities, such as $q\approx 7$, can be naturally explained by the combined result of all three effects

Conclusions

- relativistic iron lines in X-ray spectra are useful tools for investigation of the innermost regions of black hole accretion discs
- steep radial emissivity in X-ray disc-reflection spectra may be due to:
 - → centrally localised corona (*Martocchia et al. 00, Wilkins et al. 12*)
 - → the employed definition of the angular distribution of the disc emission (Svoboda et al. 09)
 - → radially stratified ionisation (*Svoboda et al. 12, submitted*)
- \bullet very steep radial emissivities, such as $q\approx 7$, can be naturally explained by the combined result of all three effects

Thanks a lot for your attention!