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Motivation

1. THREE PROBLEMS

1.1 Mass

Positive energy theorems
Pa

ADM, Pa
BS – future pointing and timelike,

i.e. m2 := ηa b Pa Pb > 0, m > 0
Positive lower bound: m ≥ M > 0 ?
(For BH the Penrose and Dain inequalities are such.)

Bäckdahl, Valiente-Kroon: In vacuum, asymptotically flat (AF)
mADM ≈ ‖D(ABλC)‖2

L2
. For mBS =? Or: in the presence of matter?

In closed universes: NO energy-momentum by 2-surface
integrals
But: maybe in other way? E.g. mass as a positive measure of
the strength of the gravitational field?
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1.2 Gauge conditions

To reduce the huge gauge freedom of GR (e.g. in the energy
positivity proofs, evolution problem, numerical calculations, ...)

DA′Aλ
A = 0 — Witten’s gauge,

DA′Aψ
A + αSA′Aψ

A = 0 — Parker’s gauge,

DABφ
B = βφA + no zero of φA — Nester’s gauge.

These are known to admit solutions on asymptotically flat (AF) Σ.

Existence of their solutions in closed universes?
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1.3 Spectral characterization of geometries

E.g. by the eigenvalues and the structure of the spectrum of the
Laplace, Dirac, ... operators? (Lichnerowicz, Friedrich, Bär, ...)

Hijazi, Zhang: Sharp lower bound for the 1st eigenvalue of the
SW operator:

α2
1 ≥

3
4κ inf

la

∫
Σ

taTab lbdΣ∫
Σ

tc lcdΣ

Even greater lower bound, which is not trivial even in vacuum?

Expression for the first eigenvalue itself?
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Results

2. RESULTS
The answer to the questions above in red.
In particular (Class. Quantum Grav. 29 (2012) 095001):

Notation:
Σ – spacelike hypersurface,
ta – future pointing unit (timelike) normal,
DAB :=

√
2tBA′DAA′ :=

√
2t(B

A′∇A)A′ – Sen connection,
‖ψA‖2

L2
:=

∫
Σ

√
2tAA′ψAψ̄A′

dΣ – the L2 norm,

M := inf
{√2
κ
‖D(ABλC)‖2

L2
+

∫
Σ

taTabλ
Bλ̄B′

dΣ
}

;

where

◦ On AF/AH Σ: λA −∞λA = o(r−
1
2 ), ∞λA is constant/sol. of the

asymptotic twistor eq., resp., normalization: ∞tAA′∞λ
A
∞λ̄

A′
= 1.

◦ On closed Σ: ‖λA‖L2 = 1.

Then (using the Reula–Tod form of the Sen–Witten identity) :
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Results

On AF/AH Σ:

◦ The ∞λA ∞λ̄A ′ -component of Pa
ADM , Pa

BS in the Witten
gauge can be rewritten as

√
2
κ
‖D(ABλC)‖2

L2
+

∫
Σ

taTabλ
Bλ̄B′

dΣ

– generalizations of the result of Bäckdahl and
Valiente-Kroon;

◦ mADM , mBS ≥ M > 0 – non-trivial positive lower bound.

On closed Σ:

◦ M = 0 iff (M,gab) is flat and Σ ≈ S1 × S1 × S1 – positive
definite measure of the strength of gravity, given by the
same formula as for Pa λA λ̄A ′ – the dimension is mass;

◦ Witten’s gauge condition has a non-trivial solution iff M = 0;
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◦ For the first eigenvalue α1 of 2DAA′DA′Bλ
B = α2λA:

α2
1 =

3
2
√

2
κM

– mass of closed universes as the first eigenvalue of the SW
operator;
– generalization of the result of Hijazi and Zhang;

Generalization/extension of Witten’s gauge condition to closed
universes: 2DAA′DA′Bλ

B = α2
1λ

A.

Conjecture:
The first eigenspinors of 2DAA′DA′B are nowhere vanishing on
Σ.
Then there would be: Geometrically distinguished triad on Σ
and lapse.
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