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Stability

It is of considerable interest to determine the linear

stablity of black holes in (D-dimensional) general

relativity. We will consider vacuum general relativity

without a cosmological constant here, but our methods

apply to general theories of gravity. It is also of interest

to determine the linear stability of the corresponding

black branes in (D + p)-dimensions, i.e., spacetimes with

metric of the form

ds̃2

D+p = ds2

D +

p
∑

i=1

dz2

i ,

where ds2
D is a black hole metric. One can analyze this



issue by writing out the linearized Einstein equation off

of the black hole or black brane background spacetime.

One can establish linear stability by finding a positive

definite conserved norm for perturbations, whereas linear

instability can be established by finding a solution with

(gauge independent) unbounded growth in time.

However, even in the very simplest cases—such as the

Schwarzschild black hole (Regge-Wheeler, Zerilli) and the

Schwarzschild black string (Gregory-Laflamme)—it is

quite nontrivial to carry out the decoupling of equations

and the fixing of gauge needed to determine stability or

instability directly from the equations of motion.



Thermodynamic Stability

Consider a homogeneous thermodynamic system, whose

entropy, S, is a function of energy, E, and other extensive

state parameters Xi, S = S(E,Xi). The condition for

thermodynamic instability is that the Hessian matrix

HS =





∂2S
∂E2

∂2S
∂Xi∂E

∂2S
∂E∂Xi

∂2S
∂Xi∂Xj



 .

admit a positive eigenvalue. If this happens, then one

can increase total entropy by exchanging E and/or Xi

between different parts of the system. For the case of E,

this corresponds to having a negative heat capacity.

A positive eigenvalue of the Hessian is equivalent to



finding a perturbation of the system such that

δ2E − Tδ2S −
∑

i

Yiδ
2Xi < 0

where Yi = (∂E/∂Xi)S.



Gubser-Mitra Conjecture for Black Branes

Black holes and black branes are thermodynamic

systems, with

E ↔ M

S ↔
A

4
Xi ↔ Ji, Qi

Thus, in the vacuum case (Qi = 0) a black hole or black

brane is thermodynamically unstable if the Hessian

matrix

HA =





∂2A
∂M2

∂2A
∂Ji∂M

∂2A
∂M∂Ji

∂2A
∂Ji∂Jj



 .



admits a positive eigenvalue. This is equivalent to

finding a perturbation for which

δ2M −
κ

8π
δ2A−

∑

A

ΩAδ
2JA < 0 .

One might expect that this condition for thermodynamic

instability might imply dynamical instability. However,

this is clearly false: The Schwarzschild black hole has

negative heat capacity (A = 16πM 2, so ∂2A/∂M 2 > 0)

but is well known to be stable. Nevertheless, the

Schwarzschild black string is unstable. The Gubser-Mitra

conjecture states that the above thermodynamic criterion

for instability is a valid criterion dynamical instability for



black branes.

We will prove that the Gubser-Mitra conjecture follows

as a consequence of a more fundamental stability

criterion that we shall establish.



Local Penrose Inequality

Suppose one has a family of stationary, axisymmetric

black holes parametrized by M and angular momenta

J1, . . . , JN . Consider an arbitrary axisymmetric

perturbation. Let A denotes the area of the apparent

horizon of the perturbed spacetime, Ā denotes the the

event horizon area of the stationary black hole with the

same mass and angular momentum as the perturbed

spacetime. The event horizon of the perturbed black hole

must lie outside the apparent horizon and (for small

perturbations) must have larger area. This area can only

increase with time, so the final area of the horizon will be

larger than Ā. Furthermore, the final mass of the black



hole cannot be larger than the initial total mass (by

positivity of Bondi flux), and its final angular momenta

must equal the initial angular momenta (by

axisymmetry). It follows that if, to second order, we have

δ2A > δ2Ā

then there would be a contraction if the perturbed black

hole solution were to settle down to a stationary black

hole in the family. This implies that satisfaction of this

inequality implies instablity—although it does not imply

stability if δ2A ≤ δ2Ā always holds.



Our more fundamental stability criterion implies that

satisfaction of δ2A ≤ δ2Ā is necessary and sufficient for

black hole stability with respect to axisymmetric

perturbations.



Our Results

We consider perturbations γ of a static or

stationary-axisymmetric black hole or black brane with

bifurcate Killing horizon and consider the canonical

energy of the perturbation defined by

E =

∫

Σ

ω(g; γ,£tγ)

where Σ extends from the bifurcation surface to infinity.

We show that the necessary and sufficient condition for

stability of a black hole (or black brane) with respect to

axisymmetric perturbations is positivity of E on a Hilbert

space, V , of perturbations with vanishing perturbed

mass, angular momentum, and linear momentum,



δM = δJA = δPi = 0.

We will also show that

E = δ2M −
κ

8π
δ2A−

∑

A

ΩAδ
2JA

In other words, dynamical stability is equivalent to

thermodynamic stability for perturbations with

δM = δJA = δPi = 0. The “change of mass”

perturbation of Schwarzschild—for which E < 0—does

not “count” for testing stability because, obviously,

δM 6= 0.

However, if a black hole has a perturbation with E < 0

with δM 6= 0 and/or δJA 6= 0, we prove that there exists

a sufficiently long wavelength perturbation of any



corresponding black brane for which E < 0 but

δM = δJA = 0. This proves the Gubser-Mitra conjecture.

Thus, for example, the calculation that

∂2A/∂M 2 = 32π > 0 for Schwarzschild tells one nothing

about the stability of Schwarzschild black hole, but it

proves the instability of the Schwarzshild black string to

sufficiently long wavelength perturbations.

Finally, we prove that if one can find a perturbation of a

black hole for which δ2A > δ2Ā, if and only if one can

find a perturbation for which δM = δJA = δPi = 0 and

E < 0. This proves that satisfaction of the local Penrose

inequality is equivalent to dynamical stability.



Variational Formulas

Lagrangian for vacuum general relativity:

La1...aD
=

1

16π
R ǫa1...aD

.

First variation:

δL = E · δg + dθ ,

with

θa1...ad−1
=

1

16π
gacgbd(∇dδgbc −∇cδgbd)ǫca1...ad−1

.

Symplectic current ((D − 1)-form):

ω(g; δ1g, δ2g) = δ1θ(g; δ2g) − δ2θ(g; δ1g) .



Symplectic form:

WΣ(g; δ1g, δ2g) ≡

∫

Σ

ω(g; δ1g, δ2g)

= −
1

32π

∫

Σ

(δ1habδ2p
ab − δ2habδ1p

ab) ,

with

pab ≡ h1/2(Kab − habK) .

Noether current:

JX ≡ θ(g,£Xg) −X · L

= X · C + dQX .



Fundamental variational identity:

ω(g; δg,£Xg) = X · [E(g) · δg] +X · δC

+d [δQX(g) −X · θ(g; δg)]

ADM conserved quantities:

δHX =

∫

∞

[δQX(g) −X · θ(g; δg)]

For a stationary black hole, choose X to be the horizon

Killing field

Ka = ta +
∑

ΩAφ
a
A

Integration of the fundamental identity yields the first



law of black hole mechanics:

0 = δM −
∑

A

ΩAδJA −
κ

8π
δA .



Horizon Gauge Conditions

Consider stationary black holes with surface gravity

κ > 0, so the event horizon is of “bifurcate type,” with

bifurcation surface B. Consider an arbitrary perturbation

γ = δg. Gauge condition that ensures that the location of

the horizon does not change to first order:

δϑ|B = 0 .

Additional gauge condition that we impose:

δǫ|B =
δA

A
ǫ .



Canonical Energy

Define the canonical energy of a perturbation γ = δg by

E ≡WΣ (g; γ,£tγ)

The second variation of our fundamental identity then

yields (for axisymmetric perturbations)

E = δ2M −
∑

A

ΩAδ
2JA −

κ

8π
δ2A .

More generally, can view the canonical energy as a

bilinear form E(γ1, γ2) = WΣ(g; γ1,£tγ2) on

perturbations. E can be shown to satisfy the following

properties:



• E is conserved, i.e., it takes the same value if

evaluated on another Cauchy surface Σ′ extending

from infinity to B.

• E is symmetric, E(γ1, γ2) = E(γ2, γ1)

• When restricted to perturbations for which δA = 0

and δPi = 0 (where Pi is the ADM linear

momentum), E is gauge invariant.

• When restricted to the subspace, V , of perturbations

for which δM = δJA = δPi = 0 (and hence, by the

first law of black hole mechanics δA = 0), we have

E(γ′, γ) = 0 for all γ′ ∈ V if and only if γ is a

perturbation towards another stationary and



axisymmetric black hole. (The proof of the “only if”

part of this result was ∼ 40% of the work of this

paper!)

Thus, if we restrict to perturbations in the subspace, V ′,

of perturbations in V modulo perturbations towards

other stationary black holes, then E is a non-degenerate

quadratic form. Consequently, on V ′, either (a) E is

positive definite or (b) there is a ψ ∈ V ′ such that

E(ψ) < 0. If (a) holds, we have stability.



Flux Formulas

Let δNab denote the perturbed Bondi news tensor at null

infinity, I+, and let δσab denote the perturbed shear on

the horizon, H. If the perturbed black hole were to

“settle down” to another stationary black hole at late

times, then δNab → 0 and δσab → 0 at late times. We

show that—for axisymmetric perturbations—the change

in canonical energy would then be given by

∆E = −
1

16π

∫

I

δÑcdδÑ
cd −

1

4π

∫

H

(Ka∇au) δσcdδσ
cd ≤ 0 .

Thus, E can only decrease. Therefore if one has a

perturbation ψ ∈ V ′ such that E(ψ) < 0, then ψ cannot

“settle down” to a stationary solution at late times



because E = 0 for stationary perturbations with

δM = δJA = δPi = 0. Indeed, |E(ψ)| should grow

without bound, i.e., in case (b) we have instability.



Instability of Black Branes

Theorem: Suppose a family of black holes parametrized

by (M,JA) is thermodynamically unstable at (M0, J0A),

i.e., there exists a perturbation within the black hole

family for which E < 0. Then, for any black brane

corresponding to (M0, J0A) one can find a sufficiently

long wavelength perturbation for which Ẽ < 0 and

δM̃ = δJ̃A = δP̃i = δÃ = δT̃i = 0.

This result is proven by modifying the initial data for the

perturbation to another black hole with E < 0 by

multiplying it by exp(ikz) and then re-adjusting it so

that the modified data satisfies the constraints. The new

data will automatically satisfy



δM̃ = δJ̃A = δP̃i = δÃ = δT̃i = 0 because of the exp(ikz)

factor. For sufficiently small k, it can be shown to satisfy

Ẽ < 0.



Equivalence to Local Penrose Inequality

Let ḡab(M,JA) be a family of stationary, axisymmetric,

and asymptotically flat black hole metrics on M . Let

gab(λ) be a one-parameter family of axisymmetric metrics

such that gab(0) = ḡab(M0, J0A). Let M(λ), JA(λ) denote

the mass and angular momenta of gab(λ) and let A(λ)

denote the area of its apparent horizon. Let

ḡab(λ) = ḡab(M(λ), JA(λ)) denote the one-parameter

family of stationary black holes with the same mass and

angular momenta as gab(λ).

Theorem: There exists a one-parameter family gab(λ) for

which

A(λ) > Ā(λ)



to second order in λ if and only if there exists a

perturbation γ′ab of ḡab(M0, (J0A) with

δM = δJA = δPi = 0 such that E(γ′) < 0.

Proof: The first law of black hole mechanics implies

A(λ) > Ā(λ) to first order in λ, so what counts are the

second order variations. Since the families have the same

mass and angular momenta, we have

κ

8π

[

d2A

dλ2
(0) −

d2Ā

dλ2
(0)

]

= E(γ̄, γ̄) − E(γ, γ)

= −E(γ′, γ′) + 2E(γ′, γ̄)

= −E(γ′, γ′)

where γ′ = γ̄ − γ.



Conclusion

Dynamical stability of a black hole is equivalent to its

thermodynamic stability with respect to perturbations

for which δM = δJA = δPi = 0.

Thus, the remarkable relationship between the laws of

black hole physics and the laws of thermodynamics

extends to dynamical stability.


