Dynamics of black holes in de Sitter spacetimes

Phys.Rev. D85 (2012) 104039

Miguel Zilhão^{1,2}
V. Cardoso L. Gualtieri C. Herdeiro U. Sperhake
H. Witek

¹Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto ²Departamento de Física da Universidade de Aveiro & I3N

29th June 2012, 100 Years after Einstein in Prague

Contents

- Motivation
- Black holes in de Sitter
 - Formalism
 - Results
- Final remarks
 - Conclusions

- Motivation
- Black holes in de Sitter
 - Formalism
 - Results
- Final remarks
 - Conclusions

Why numerical relativity

Study of systems with strong and dynamical gravitational fields

- Gravitational radiation
 - Astrophysics, gravitational wave astronomy
- Mathematical and theoretical Physics:
 - Cosmic censorship
 - Instabilities (Black hole interior, Myers-Perry)
- High-energy particle systems:
 - AdS/CFT correspondence;
 - Black hole production at the LHC;

de Sitter

- Large-scale structure of our universe appears to be that of a de Sitter geometry:
 - How do inhomogeneities develop in time? Are they washed away by the cosmological expansion? (Shibata et. al 1994)
 - Cosmological dynamics should leave imprints in primordial black hole formation, which carry signatures of the cosmological acceleration; (Shibata & Sasaki, 1999)
- Two large BHs in de Sitter could, upon merger, give rise to too large a BH to fit in its cosmological horizon ⇒ naked singularity.

- Motivation
- Black holes in de Sitter
 - Formalism
 - Results
- Final remarks
 - Conclusions

- Motivation
- Black holes in de Sitter
 - Formalism
 - Results
- Final remarks
 - Conclusions

Formalism

Einstein's equations

$$R_{\mu
u} - rac{1}{2} g_{\mu
u} R + 3 H^2 g_{\mu
u} = 0$$

Evolution equations

$$\begin{split} \left(\partial_{t} - \mathcal{L}_{\beta}\right) \gamma_{ij} &= -2\alpha K_{ij} \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right) K_{ij} &= -D_{i} \partial_{j} \alpha + \alpha \left({}^{(3)}R_{ij} - 2K_{i}{}^{k}K_{jk} + K_{ij}K - 3H^{2}\gamma_{ij} \right) \end{split}$$

Constraints

$$\mathcal{H} \equiv^{(3)} R - K_{ij} K^{ij} + K^2 - 6H^2 = 0$$

$$\mathcal{M}_i \equiv D_i K - D_i K_i^j = 0$$

Initial data

Writing
$$K_{ij} \equiv A_{ij} + \frac{K}{3} \gamma_{ij}$$

Constraints

$$^{(3)}R - A_{ij}A^{ij} + \frac{2}{3}\left(K^2 - 9H^2\right) = 0$$

$$D_j\left(A^j{}_i - \frac{2}{3}\delta^j_iK\right) = 0$$

 \Rightarrow set K=-3H to decouple equations. (Nakao et al 1993)

Initial data

Two BHs, asymptotically de Sitter

$$\gamma_{ij}dx^{i}dx^{j} = \left(1 + rac{m_{1}}{2r_{1}} + rac{m_{2}}{2r_{2}}\right)^{4}(dx^{2} + dy^{2} + dz^{2})$$
 $K_{j}^{i} = -H\delta_{j}^{i},$

Schwarzschild-de Sitter

S-dS, McVittie coordinates

$$ds^2 = -\left(rac{1-\xi}{1+\xi}
ight)^2 dt^2 + a(t)^2 (1+\xi)^4 (dr^2 + r^2 d\Omega_2)$$
 $K_j^i = -H\delta_j^i, \qquad a(t) = \exp(Ht), \quad \xi \equiv rac{m}{2a(t)r}$

with $\emph{m}=0$, cosmological horizon (centred at the origin) stands at

$$r_{\mathcal{H}_C} = 1/(He^{Ht})$$

- Motivation
- Black holes in de Sitter
 - Formalism
 - Results
- Final remarks
 - Conclusions

Head-on collision from "rest"

 Evolution is stable and the constraints are preserved;

Successfully monitor the apparent horizons;

Black holes in de Sitter: "small" BHs

- Two parameters: H, d
- d < d_{crit} ⇒ merger
 d > d_{crit} ⇒ no common AH

 Critical coordinate distance for small mass binaries

Black holes in de Sitter: "large" BHs

 Proper distance between the black hole horizons as a function of time

- Motivation
- Black holes in de Sitter
 - Formalism
 - Results
- Final remarks
 - Conclusions

- Motivation
- Black holes in de Sitter
 - Formalism
 - Results
- Final remarks
 - Conclusions

Conclusions

- Numerically solving Einstein's equations in dynamical situations has the potential to answer important questions.
- BHs in de Sitter:
 - Evolved head-on collision of BHs in asymptotically de Sitter spacetimes and monitored apparent horizons;
 - Studied formation of common apparent horizon as function of initial separation;
 - Results compatible with cosmic censorship.
- To Do:
 - Perform numerical evolutions in collapsing universes.