Spherical Black Holes in Quadratic Gravity

Robert Švarc

in collaboration with J. Podolský, V. Pravda and A. Pravdová
Charles University and Czech Academy of Sciences, Prague, Czech Republic czechLISA: Prague Relativity Group summer meeting, June 2021

Quadratic gravity: $S=\int \mathrm{d}^{4} x \sqrt{-g}\left(\gamma(R-2 \Lambda)+\beta R^{2}-\alpha C_{a b c d} C^{a b c d}\right)$

Fully general quadratic gravity in $D=4$:

$$
\gamma\left(R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}\right)-4 \alpha B_{a b}+2 \beta\left(R_{a b}-\frac{1}{4} R g_{a b}+g_{a b} \square-\nabla_{b} \nabla_{a}\right) R=0
$$

Employing assumption: $R=$ const.

$$
\gamma\left(R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}\right)-4 \alpha B_{a b}+2 \beta\left(R_{a b}-\frac{1}{4} R g_{a b}\right) R=0
$$

The trace: using $g^{a b} B_{a b}=0$

$$
R=4 \Lambda
$$

$\underline{\text { Substituting the trace: }}$

$$
(\gamma+8 \beta \Lambda)\left(R_{a b}-\Lambda g_{a b}\right)=4 \alpha B_{a b}
$$

Two independent subclasses:

- $\gamma+8 \beta \Lambda=0$: new solutions via $B_{a b}=\Omega^{-2} B_{a b}^{\text {seed }}$ preserving $R=$ const with $B_{a b}^{\text {seed }}=0$ for more details see [Pravda et al. 2017]
- $\gamma+8 \beta \Lambda \neq 0:$ our aim of study: we can introduce $k \equiv \frac{\alpha}{\gamma+8 \beta \Lambda}$

What is the most suitable metric ansatz?

Standard spherically symmetric line element:

$$
\mathrm{d} s^{2}=-h(\bar{r}) \mathrm{d} t^{2}+\frac{\mathrm{d} \bar{r}^{2}}{f(\bar{r})}+\bar{r}^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

VERSUS

An alternative metric form:

$$
\mathrm{d} s^{2}=\Omega^{2}(r)\left[\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}-2 \mathrm{~d} u \mathrm{~d} r+\mathcal{H}(r) \mathrm{d} u^{2}\right]
$$

- coordinates and metric functions related via

$$
\bar{r}=\Omega(r) \quad t=u-\int \mathcal{H}(r)^{-1} \mathrm{~d} r \quad h(\bar{r})=-\Omega^{2} \mathcal{H} \quad f(\bar{r})=-\left(\frac{\Omega^{\prime}}{\Omega}\right)^{2} \mathcal{H}
$$

- $\mathrm{d} s^{2}=\Omega^{2} \mathrm{~d} s_{\text {Kundt }}^{2}$: conformal to a type D direct-product Kundt 'seed'

Field equations: classic metric ansatz

Spherically symmetric line element:

$$
\mathrm{d} s^{2}=-h(\bar{r}) \mathrm{d} t^{2}+\frac{\mathrm{d} \bar{r}^{2}}{f(\bar{r})}+\bar{r}^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Field equations:

$$
R_{a b}-\Lambda g_{a b}=4 k B_{a b}
$$

Field equations: classic metric ansatz

Spherically symmetric line element:

$$
\mathrm{d} s^{2}=-h(\bar{r}) \mathrm{d} t^{2}+\frac{\mathrm{d} \bar{r}^{2}}{f(\bar{r})}+\bar{r}^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Field equations:

$$
R_{a b}-\Lambda g_{a b}=4 k B_{a b}
$$

$\underline{\bar{r}} \bar{r}$ - and $t t$-component of the field equations:

Field equations: classic metric ansatz

$\underline{\text { Spherically symmetric line element: }}$

$$
\mathrm{d} s^{2}=-h(\bar{r}) \mathrm{d} t^{2}+\frac{\mathrm{d} \bar{r}^{2}}{f(\bar{r})}+\bar{r}^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Field equations:

$$
R_{a b}-\Lambda g_{a b}=4 k B_{a b}
$$

$\bar{r} \bar{r}$ - and $t t$-component of the field equations:

$$
\begin{aligned}
& -4 \Lambda h^{2} r-2 h f h^{\prime \prime} r-h f^{\prime} h^{\prime} r+f h^{2} r-4 f^{\prime} h^{2}=-\frac{4}{3} \frac{1}{r^{3} h^{2}}\left(k \left(r^{3} f^{2} h^{2}\left(h^{\prime} r-2 h\right) h^{\prime \prime \prime}-\frac{1}{2} h^{2} f^{2} h^{\prime 2} r^{4}-\frac{3}{2}\left(f h^{2} r^{2}-\frac{2}{3} h r\left(f^{\prime} r+6 f\right) h^{\prime}\right.\right.\right. \\
& \left.\quad+\frac{4}{3} h^{2}\left(f^{\prime} r+2 f\right)\right) f h r^{2} h^{\prime \prime}+\frac{1}{2} h^{2} f r^{2}\left(h^{\prime} r-2 h\right)^{2} f^{\prime \prime}+\frac{7}{8} f^{2} h^{4} r^{4}-\frac{3}{4}\left(f^{\prime} r+\frac{10}{3} f\right) f h r^{3} h^{3}-\frac{1}{8} r^{2} h^{2}\left(f^{2} r^{2}-16 r f^{\prime} f+4 f^{2}\right) h^{2} \\
& \left.\left.+\frac{1}{2} r h^{3}\left(f^{2} r^{2}-2 r f^{\prime} f+8 f^{2}\right) h^{\prime}-\frac{1}{2} h^{4}\left(f^{2} r^{2}+4 f^{2}-4\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 h f h^{\prime \prime} r-f h^{2} r+h\left(f^{\prime} r+4 f\right) h^{\prime}+4 \Lambda h^{2} r=-\frac{1}{r^{3} h^{2}}\left(8 k \left(-\frac{1}{3} h^{3} f^{2} h^{\prime \prime \prime \prime} r^{4}+\left(h^{\prime} f r-\left(f^{\prime} r+\frac{4}{3} f\right) h\right) f h^{2} r^{3} h^{\prime \prime \prime}-\frac{1}{6} r^{3} f h^{3}\left(h^{\prime} r-2 h\right) f^{\prime \prime \prime}\right.\right. \\
& \quad+\frac{3}{4} h^{2} f^{2} h^{\prime 2} r^{4}-\frac{29}{12}\left(\frac{8}{29} h^{2} f f^{\prime \prime} r+f^{2} h^{2} r-\frac{27}{29} f h\left(f^{\prime} r+\frac{26}{27} f\right) h^{\prime}+\frac{3}{29} f^{\prime} h^{2}\left(f^{\prime} r+\frac{26}{3} f\right)\right) h r^{3} h^{\prime \prime}+\frac{1}{2}\left(f h^{2} r^{2}-\frac{1}{6} h r\left(f^{\prime} r\right.\right. \\
& \left.\quad+6 f) h^{\prime}+\frac{1}{3} h^{2}\left(f^{\prime} r+2 f\right)\right) h^{2} r^{2} f^{\prime \prime}+\frac{49}{48} f^{2} h^{4} r^{4}-\frac{29}{24} f\left(f^{\prime} r+\frac{22}{29} f\right) h r^{3} h^{3}+\frac{3}{16}\left(f^{2} r^{2}+\frac{16}{3} r f^{\prime} f-\frac{20}{9} f^{2}\right) h^{2} r^{2} h^{2} \\
& \left.\left.\quad-\frac{1}{12} h^{3} f^{\prime} r^{2}\left(f^{\prime} r-10 f\right) h^{\prime}-\frac{1}{12} h^{4}\left(f^{2} r^{2}+8 r f^{\prime} f-4 f^{2}+4\right)\right)\right)
\end{aligned}
$$

Field equations: conformal to Kundt metric ansatz

An alternative form of spherically symmetric line element:

$$
\mathrm{d} s^{2}=\Omega^{2}(r)\left[\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}-2 \mathrm{~d} u \mathrm{~d} r+\mathcal{H}(r) \mathrm{d} u^{2}\right]
$$

Field equations:

$$
R_{a b}-\Lambda g_{a b}=4 k B_{a b}
$$

Field equations: conformal to Kundt metric ansatz

An alternative form of spherically symmetric line element:

$$
\mathrm{d} s^{2}=\Omega^{2}(r)\left[\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}-2 \mathrm{~d} u \mathrm{~d} r+\mathcal{H}(r) \mathrm{d} u^{2}\right]
$$

Field equations:

$$
R_{a b}-\Lambda g_{a b}=4 k B_{a b}
$$

$r r$-, $r u$ - and $\phi \phi$-component of the field equations:

Field equations: conformal to Kundt metric ansatz

An alternative form of spherically symmetric line element:

$$
\mathrm{d} s^{2}=\Omega^{2}(r)\left[\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}-2 \mathrm{~d} u \mathrm{~d} r+\mathcal{H}(r) \mathrm{d} u^{2}\right]
$$

Field equations:

$$
R_{a b}-\Lambda g_{a b}=4 k B_{a b}
$$

$r r$-, $r u$ - and $\phi \phi$-component of the field equations:

$$
\begin{gathered}
\Omega^{\prime \prime} \Omega-2 \Omega^{2}=\frac{1}{3} k H^{\prime \prime \prime \prime} \\
2 \Lambda \Omega^{4}-H^{\prime \prime} \Omega^{2}-2 \Omega^{\prime \prime} H \Omega-2 \Omega^{2} H-4 \Omega^{\prime} H^{\prime} \Omega=-\frac{1}{3} k\left(H^{\prime 2}-2 H^{\prime} H^{\prime \prime \prime}-4 H H^{\prime \prime \prime \prime}-4\right) \\
-\Lambda \Omega^{4}+\Omega^{\prime \prime} H \Omega+\Omega^{2} H+\Omega^{\prime} H^{\prime} \Omega+\Omega^{2}=-\frac{1}{6} k\left(H^{\prime 2}-2 H^{\prime} H^{\prime \prime \prime}-2 H H^{\prime \prime \prime \prime}-4\right)
\end{gathered}
$$

The trace:

$$
-4 \Lambda \Omega^{3}+\Omega H^{\prime \prime}+6 H \Omega^{\prime \prime}+6 H^{\prime} \Omega^{\prime}+2 \Omega=0
$$

Moreover, we employ the Bianchi identities

Simplifying the system of field equations

Three non-trivial equations for two unknown functions $\Omega(r)$ and $\mathcal{H}(r)$
Define: the auxiliary tensor

$$
J_{a b} \equiv R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}-4 k B_{a b}
$$

- the field equations are $J_{a b}=0$
- the Bianchi identities $R_{a b} ; b=\frac{1}{2} R_{; a}$ and the Bach tensor property $B_{a b} ; b=0$:

$$
J_{a b} ; b \equiv 0
$$

i.e.

$$
\begin{aligned}
& J_{r b} ; b=-\Omega^{-3} \Omega^{\prime}\left(J_{i j} g^{i j}+\mathcal{H} J_{r r}\right)-\Omega^{-2}\left(\mathcal{H} J_{r r, r}+J_{r u, r}+\frac{3}{2} \mathcal{H}^{\prime} J_{r r}\right) \equiv 0 \\
& J_{u b} ; b=-2 \Omega^{-3} \Omega^{\prime}\left(J_{u u}+\mathcal{H} J_{r u}\right)-\Omega^{-2}\left(J_{u u}+\mathcal{H} J_{r u}\right)_{, r} \equiv 0 \\
& J_{i b} ; b=\Omega^{-2} J_{i k| | l} g^{k l} \equiv 0
\end{aligned}
$$

Direct calculation: $\quad J_{u u}=-\mathcal{H} J_{r u} \quad$ and $\quad J_{k l}=\mathcal{J}(r) g_{k l}$
The first identity: $\quad \Omega(r)$ and $\mathcal{H}(r)$ satisfy $J_{r r}=0=J_{r u} \quad \Rightarrow \quad J_{i j} g^{i j} \equiv 0 \quad \Rightarrow \quad \mathcal{J}(r)=0$

Field equations: autonomous system of ODEs

Evaluation of the field equations yields two ODEs for $\Omega(r)$ and $\mathcal{H}(r)$:

$$
\begin{aligned}
\Omega \Omega^{\prime \prime}-2 \Omega^{\prime 2} & =\frac{1}{3} k \mathcal{B}_{1} \mathcal{H}^{-1} \\
\Omega \Omega^{\prime} \mathcal{H}^{\prime}+3 \Omega^{\prime 2} \mathcal{H}+\Omega^{2}-\Lambda \Omega^{4} & =\frac{1}{3} k \mathcal{B}_{2}
\end{aligned}
$$

where

$$
\mathcal{B}_{1} \equiv \mathcal{H} \mathcal{H}^{\prime \prime \prime \prime} \quad \mathcal{B}_{2} \equiv \mathcal{H}^{\prime} \mathcal{H}^{\prime \prime \prime}-\frac{1}{2} \mathcal{H}^{\prime \prime 2}+2
$$

- equations do not explicitly depend on r - autonomous system
- solutions can be expressed as power series in r expanded around any point r_{0}

$$
\Omega(r)=\Delta^{n} \sum_{i=0}^{\infty} a_{i} \Delta^{i} \quad \mathcal{H}(r)=\Delta^{p} \sum_{i=0}^{\infty} c_{i} \Delta^{i}
$$

with $\Delta \equiv r-r_{0}, \quad n, p \in \mathbb{R} \quad$ and $\quad a_{0}, c_{0} \neq 0$

- asymptotic expansions as $r \rightarrow \infty$ in negative powers of r

$$
\Omega(r)=r^{N} \sum_{i=0}^{\infty} A_{i} r^{-i} \quad \mathcal{H}(r)=r^{P} \sum_{i=0}^{\infty} C_{i} r^{-i}
$$

with $N, P \in \mathbb{R} \quad$ and $\quad A_{0}, C_{0} \neq 0$

Example: dominant powers of Δ

The first field equation:

$$
\begin{aligned}
\sum_{l=2 n-2}^{\infty} \Delta^{l} \sum_{i=0}^{l-2 n+2} a_{i} a_{l-i-2 n+2}(l-i-n & +2)(l-3 i-3 n+1) \\
& =\frac{1}{3} k \sum_{l=p-4}^{\infty} \Delta^{l} c_{l-p+4}(l+4)(l+3)(l+2)(l+1)
\end{aligned}
$$

- coefficients with the same powers of Δ^{l} on both sides relates c_{j} in terms of (products of) a_{j}
- the lowest order terms $(l=2 n-2$ and $l=p-4)$ give

$$
-a_{0}^{2} n(n+1) \Delta^{2 n-2}=\frac{1}{3} k c_{0} p(p-1)(p-2)(p-3) \Delta^{p-4}
$$

i.e. three distinct possibilities w.r.t. $2 n-2 \lesseqgtr p-4$

- employing the second field equation (and/or trace) restricts $[n, p]$ and Λ :

n	0	0	1	-1	-1	0	0	<0
p	1	0	0	2	0	2	≥ 2	$2 n+2$
Λ	any	any	any	0	$\neq 0$	$\neq 0$	$\frac{3}{8 k}$	$\frac{11 n^{2}+6 n+1}{1-4 n^{2}} \frac{3}{8 k}$

Generic solutions to QG and the Einstein-Weyl theory

We focus on the $\Lambda=0$ case (for simplicity): $\Omega(r)$ and $\mathcal{H}(r)$

- the power series expanded around any constant value r_{0}

Class $[n, p]$	Family (s, t)	Interpretation
$[-1,2]$	$(0,0)^{\infty}$	Schwarzschild BH
$[0,1]$	$(-1,1)_{\bar{r}_{0}}$	Schwarzschild-Bach BH (near the horizon)
$[0,0]$	$(0,0)_{\bar{r}_{0}}$	generic solution (including the Sch-B BH and wormholes)
$[1,0]$	$(2,2)_{0}$	Bachian singularity (near the singularity)

- the power series expanded as $r \rightarrow \infty$

Class $[N, P]^{\infty}$	Family (s, t)	Interpretation
$[-1,3]^{\infty}$	$(1,-1)_{0}$	Schwarzschild-Bach BH (near the singularity)
$[-1,2]^{\infty}$	$(0,0)_{0}$	Bachian vacuum (near the origin)

How to obtain this physical interpretation?

Example: $[n=0, p=1]$ class - gauge fixing

Coefficients of the solution:

$$
\begin{gathered}
a_{1}=-\frac{a_{0}}{3 c_{0}}\left(1+c_{1}\right) \quad c_{2}=\frac{1}{6 k c_{0}}\left[a_{0}^{2}\left(2-c_{1}\right)+2 k\left(c_{1}^{2}-1\right)\right] \quad \text { and for } l \geq 2 \\
a_{l}=\frac{1}{l^{2} c_{0}}\left[-\frac{1}{3} a_{l-1}-\sum_{i=1}^{l} c_{i} a_{l-i}\left(l(l-i)+\frac{1}{6} i(i+1)\right)\right] \\
c_{l+1}=\frac{3}{k(l+2)(l+1) l(l-1)} \sum_{i=0}^{l-1} a_{i} a_{l-i}(l-i)(l-1-3 i) \quad \ldots \text { free parameters } a_{0}, c_{0}, c_{1}
\end{gathered}
$$

On the horizon: $\mathcal{B}_{1}\left(r_{h}\right)=0 \quad \mathcal{B}_{2}\left(r_{h}\right)=-\frac{1}{k} a_{0}^{2}\left(c_{1}-2\right) \quad$ define: $\quad b \equiv \frac{1}{3}\left(c_{1}-2\right)$

- for $b=0$ the Bach tensor vanishes everywhere
- Schwarzschild spacetime

$$
\Omega(r)=-r^{-1}=\bar{r} \quad \text { and } \quad \mathcal{H}(r)=\left(r-r_{h}\right) \frac{r^{2}}{r_{h}}
$$

- corresponding to the gauge fixing: $a_{0}=-r_{h}^{-1}$ and $c_{0}=r_{h}$

Example: $[n=0, p=1]$ class $-\mathbf{B H}$ with the Bach extension

With 'background' gauge choice: we set $b \neq 0$

$$
\begin{aligned}
& \Omega(r)=-\frac{1}{r}-\frac{b}{r_{h}} \sum_{i=1}^{\infty} \alpha_{i}\left(1-\frac{r}{r_{h}}\right)^{i} \\
& \mathcal{H}(r)=\left(r-r_{h}\right)\left[\frac{r^{2}}{r_{h}}+3 b r_{h} \sum_{i=1}^{\infty} \gamma_{i}\left(\frac{r}{r_{h}}-1\right)^{i}\right]
\end{aligned}
$$

where

$$
\alpha_{0} \equiv 0, \quad \alpha_{1} \equiv 1, \quad \gamma_{1}=1, \quad \gamma_{2}=\frac{1}{3}\left(4-\frac{1}{2 k r_{h}^{2}}+3 b\right)
$$

For $l \geq 2$: coefficients α_{l}, γ_{l+1} recursively given by

$$
\begin{aligned}
& \alpha_{l}=\frac{1}{l^{2}}\left[-\alpha_{l-2}(l-1)^{2}+\alpha_{l-1}\left[\frac{1}{3}+2\left(l(l-1)+\frac{1}{3}\right)\right]-3 \sum_{i=1}^{l}(-1)^{i} \gamma_{i}\left(1+b \alpha_{l-i}\right)\left(l(l-i)+\frac{1}{6} i(i+1)\right)\right] \\
& \gamma_{l+1}=\frac{(-1)^{l}}{k r_{h}^{2}(l+2)(l+1) l(l-1)} \sum_{i=0}^{l-1}\left[\alpha_{i}+\alpha_{l-i}\left(1+b \alpha_{i}\right)\right](l-i)(l-1-3 i)
\end{aligned}
$$

- two-parameter family of spherically symmetric black holes (with static regions)
- cosmological constant Λ can be added

Example: $[n=0, p=1$] class - invariants and convergence

The scalar invariants on the horizon: in terms of two physical parameters

$$
C_{a b c d} C^{a b c d}\left(r_{h}\right)=12(1+b)^{2} r_{h}^{4} \quad B_{a b} B^{a b}\left(r_{h}\right)=\frac{r_{h}^{4}}{4 k^{2}} b^{2}
$$

Convergence of the series: d'Alembert ratio test

- with n growing: the ratio between two subsequent terms approaches a specific constant
- the series thus asymptotically behave as geometric series

Expansion around horizon: Schwa-Bach-(A)dS black holes $(b \neq 0)$

Typical behaviour of the metric functions $\mathcal{H}(r)$ and $\Omega(r)$:

(first 20 (red), 50 (orange), 100 (green), 500 (blue) terms in the expansions; agreement with the numerical simulation up to the dashed lines)

The metric functions $f(\bar{r})$ and $h(\bar{r})$ of the standard spherically symmetric line element:

Tidal effects - the Jacobi equation: $\frac{\mathrm{D}^{2} Z^{\mu}}{\mathrm{d} \tau^{2}}=R_{\alpha \beta \nu}^{\mu} u^{\alpha} u^{\beta} Z^{\nu}$

The Bach components $\mathcal{B}_{1}, \mathcal{B}_{2}$ observable via a specific relative motion of free test particles:

- invariant description: an orthonormal frame associated with initially static observer
- projection of the equation of geodesic deviation onto the frame

$$
\begin{aligned}
& \ddot{Z}^{(1)}=\frac{\Lambda}{3} Z^{(1)}+\frac{1}{6} \frac{\mathcal{H}^{\prime \prime}+2}{\Omega^{2}} Z^{(1)}-\frac{k}{3} \frac{\mathcal{B}_{1}+\mathcal{B}_{2}}{\Omega^{4}} Z^{(1)} \\
& \ddot{Z}^{(i)}=\frac{\Lambda}{3} Z^{(i)}-\frac{1}{12} \frac{\mathcal{H}^{\prime \prime}+2}{\Omega^{2}} Z^{(i)}-\frac{k}{6} \frac{\mathcal{B}_{1}}{\Omega^{4}} Z^{(i)}
\end{aligned}
$$

- classic parts: isotropic influence of Λ and the Newtonian tidal effect of the Weyl tensor
- two additional effects encoded in the non-trivial Bach tensor components
- \mathcal{B}_{1} affects particles in the transverse directions $\partial_{\theta}, \partial_{\phi}$
- \mathcal{B}_{2} induces their radial acceleration along ∂_{r}
- $\mathcal{B}_{1}\left(r_{h}\right)=0$, on any horizon there is only the radial effect caused by $\mathcal{B}_{2}\left(r_{h}\right)$
- $\mathcal{B}_{1}, \mathcal{B}_{2}$ cannot mimic the classic tidal effects (i.e., cannot be "incorporated" into the Weyl part)

What have we done?

Spherically symmetric solutions to quadratic gravity with any cosmological constant:

- the alternative more convenient metric was employed
- the field equations as an autonomous system of two (simple) ODEs were formulated
- their explicit solutions (including BHs) in the form of power series were found
- the mathematical analysis and physical properties were discussed

This talk is based on our papers:

- Explicit black hole solutions in higher-derivative gravity Jiîí Podolský, Robert Švarc, Vojtěch Pravda, Alena Pravdová arXiv: 1806.08209 (Phys. Rev. D 98 (2018) 021502(R))
- Exact black holes in quadratic gravity with any cosmological constant Robert Švarc, Jirí Podolský, Vojtěch Pravda, Alena Pravdová arXiv: 1806.09516 (Phys. Rev. Lett. 121 (2018) 231104)
- Black holes and other exact spherical solutions in Quadratic Gravity Jiîí Podolský, Robert Švarc, Vojtěch Pravda, Alena Pravdová arXiv: 1907.00046 (Phys. Rev. D 101 (2020) 024027)
- Black holes and other spherical solutions in quadratic gravity with a cosmological constant Vojtěch Pravda, Alena Pravdová, Jiǐí Podolský, Robert Švarc arXiv: 1606.02646 (Phys. Rev. D 103 (2021) 064049)

What have we done?

Spherically symmetric solutions to quadratic gravity with any cosmological constant:

- the alternative more convenient metric was employed
- the field equations as an autonomous system of two (simple) ODEs were formulated
- their explicit solutions (including BHs) in the form of power series were found
- the mathematical analysis and physical properties were discussed

This talk is based on our papers:

- Explicit black hole solutions in higher-derivative gravity Jiîí Podolský, Robert Švarc, Vojtěch Pravda, Alena Pravdová arXiv: 1806.08209 (Phys. Rev. D 98 (2018) 021502(R))
- Exact black holes in quadratic gravity with any cosmological constant Robert Švarc, Jirí Podolský, Vojtěch Pravda, Alena Pravdová arXiv: 1806.09516 (Phys. Rev. Lett. 121 (2018) 231104)
- Black holes and other exact spherical solutions in Quadratic Gravity Jiǐí Podolský, Robert Švarc, Vojtěch Pravda, Alena Pravdová arXiv: 1907.00046 (Phys. Rev. D 101 (2020) 024027)
- Black holes and other spherical solutions in quadratic gravity with a cosmological constant Vojtěch Pravda, Alena Pravdová, Jiǐí Podolský, Robert Švarc arXiv: 1606.02646 (Phys. Rev. D 103 (2021) 064049)

