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1D potential barrier

* reflects left
* continues right

* special case in between

* Universal



3+1 gravitating scalar field




* Gravitational
collapse

Standard
illustration




2 possible outcomes

* (Assuming spherical symmetry)

Minkowski — Schwarzschild gguiarity

infinity




2 possible outcomes

Minkowski

mass 2m/r redshift psi = rphi

Schwarzschild




Choptuik (1993

FIG. 3. Illustration of the conjectured universality of crit-
ical evolution in the model problem. Each group of four lines
consists of one profile, at a particular instant, 7, from near-
critical evolution of each of the families listed in Table I [fam-
ilies (a)—(d), front to back]. For each family, I chose a single
overall scaling constant, k, to maximize agreement among the

. T . first (foreground) group of curves. Agreement of the profiles

FIG. 1. Typl(?a'l initial proﬁles of .t'he scalar field ¢ (SOhd at later times (towards the back of the plot) demonstrates
lines) and the radial mass-energy density dm/dr (dotted lines) universality of the evolution, regardless of initial pulse shape.
for the foiur ilies defined in Table L. Since these plots show less than one full cycle of evolution,

echoing is not apparent here.



Critical solution

mass phi 2m/r



Critical behavior

* Mg, = (A-A™)7 for initial data with amplitude A

* Mgy can be arbitrarily small

Exponent «y independent on the initial data shape

oscillating fields

periods of oscillation, fields, etc. are discretely self-symmetric with
scale ratio e4

also field configuration etc. are independent on initial data shape

* v and A depend on the field type (e.g. Young-Mills vs scalar)
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Critical collapse of GW

* No GW in spherical symmetry (3+1 gravity)

Computationaly more demanding

* Numerical relativity “workhorse” failed

(coordinate singularities appear)

* Also some irreproducible results ...

11



Initial data for evolution equations

For a simple wave eq. [Iu = 0 one needs initial u(x), 0 u(x)/otat t=0

In GR we need more quantities than DOF

ds* = —a’dt* + v;;dz*dx?
Non-linear constraints -

D;K"” —D'K =0

Evolution of vacuum spacetime with GW

8{}’@ = —206}(1':,',

0, Kij = —DiDja + a (Rij + KKij — 2Ky KF)

BH may appear in strong initial data
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ANNALS QF PHYSICS: 7, 466-483 (1959)

On the Positive Definite Mass of the Bondi-Weber—Wheeler
Time-Symmetric Gravitational Waves™f

DierEr R. BriLu

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

After the work of Weber and Wheeler there were four developments, three of
them unpublished, which led up to the turther analyses of the present paper:
(1) J. A. Wheeler pointed out in a lecture at London in March, 1958 that one
can reduce the complexity of the time-symmetric initial value equation °R = 0
and can give speeial attention to toroidal and other simple gravitational waves
if one will limit attention to metrics with axial symmetrv. The physical meaning

III. PROOF OF THE POSITIVE DEFINITE NATURE OF THE TOTAL
MASS-ENERGY OF TIME-SYMMETRIC, AXIALLY SYMMETRIC
GRAVITATIONAL WAVES

A. Bounpary ConprtioNns oN THE MEeETRICc COEFFICIENTS

Let the axially symmetric metric be written in the form

ds' = e (dp’ + dz*) + o* de], (19)
| 1 |
/—\'W + i_l (8ppq 4= azzQ) WP = 03

M = (&/27Q) f (vlog¢)” dV. 13
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Evolution of time-symmetric gravitational waves: Initial data and apparent horizons*

Kenneth Eppley
University of Maryland, College Park, Maryland
(Received 4 March 1977)
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045 7 FIG. 2. Embedding of the equatorial geometry into
B . 1 Euclidean space, The three embeddings are for ampli-
e e s T s TR tudes 4 =2, 5, and 15, respectively.

AMPLITUDE (¥ =1 at intinity)

The error introduced by the nonconservative form
(20) was not trivial, even on quite fine grids, and
could amount to almost an order-of-magnitude dif-
ference between the masses given by (11) and (12).
However, even using a uniform grid on which these
integrals agreed, they still differed from (14) by
over another order of magnitude. It was necessary
to go to a fourth-order accurate scheme to get all
the masses to agree. There is no unique way of
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Slicing conditions for axisymmetric
gravitational collapse of Brill waves
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Figure 1.15: Left: Event horizon (solid curvels) in x — z plane at simulation times ¢t = 2, 3, ..., 19

in o = 1, AP = 5 simulation with 3 = 0. The dashed curves show apparent horizon at ¢t = 10
(first MOTS appears at t ~ 9.5) and ¢ = 14. Much of the horizon growth is a coordinate
effect — when coordinates with vanishing shift are used, the horizon coordinate radius grows
even when its area stays constant. The early event horizon is not smooth. It has a rim which
worldsheet is a counterpart of the single vertex at the “beginning” of the spherical symmetric
event horizon in Fig. 1.10. Right: The same plot with added time dimension. It shows that the
horizon becomes smooth when null rays propagating radially in the equatorial plane (dashed



18



t=1050 t = 200 t = 300

o3
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Figure 1.14: Invariant quantities p, { and I in the x—z plane as the newly born black hole settles
toward the spherically symmetric state in an approximately maximal slicing. TA initial data
with & = 1, A = 0.9. The simulation coordinates x, z do not have direct meaning in the central
region. Each column shows fields at given simulation time (indicated at the top). The top row
shows the circumferential radius p and the usual horizon expansion typical for coordinates with
3" = 0. Red segments indicate MOTS at given times. Notice the difference between coordinate
radius and circumferential radius and the fact that all three apparent horizon areas are roughly
the same; their masses are 1.03,1.19, 1.20, spacetime Mapy = 1.24. The invariant ¢ is in the
middle row, and I at the bottom. Departures from the “trivial” Schwarzschild geometry are
either radiated or end up inside the black hole.
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FIG. 1. Global maxima of the Kretschmann invariant in sub-
critical spacetimes with four families of initial data depending on a
parameter A. As A approaches the critical value A, the maxima get
ever larger, as newly appearing local extrema overtake earlier ones.
To illustrate the smooth dependence of these local extrema (echoes)
on the parameter A, we fit the simulation results shown as points
with a polynomial—typically a simple linear dependence
log I'¥"* = pA + q. The plotted curves are thus composed of
segments, each corresponding to a specific local maximum being
the strongest one. An effect of the uncertainty of A, within the final
bisection interval is indicated in the rightmost segments; ABF is
taken from Ref. [12].
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Initial data
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Figure 1.11: The dependence of the ADM mass of the spacetime with gravitational waves on
the amplitude A of the Brill (left) and TA (right) initial data. Points on both curves indicate

critical values of the parameter A. For smaller |A| (green curve) the gravitational disperse and
leave behind an empty space. Stronger initial data lead to black holes.
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FIG. 1. Global maxima of the Kretschmann invariant in sub-
critical spacetimes with four families of initial data depending on a
parameter A. As A approaches the critical value A, the maxima get
ever larger, as newly appearing local extrema overtake earlier ones.
To illustrate the smooth dependence of these local extrema (echoes)
on the parameter A, we fit the simulation results shown as points
with a polynomial—typically a simple linear dependence
log I'¥"* = pA + q. The plotted curves are thus composed of
segments, each corresponding to a specific local maximum being
the strongest one. An effect of the uncertainty of A, within the final
bisection interval is indicated in the rightmost segments; ABF is
taken from Ref. [12].
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Scalar field App+ = 1.30080828 Agrin- = —3.5090625
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Figure 1.16: Profiles of the invariant  along a timelike worldline through ‘echo’ when rescaled
in time and amplitude — (o = )\EC (Te + A7) (see text). The same scale A is chosen so that so
that we get dimensionless both the function value and the argument and at the minimum we
get min((y) = —2. Top curves show the shifted value (, + 1 of five successive ‘echoes’ which
appear in the simulation with initial data (1.62) with Ap,+ = 1.30080828. To demonstrate the
universality of the curvature spikes. the bottom curves compare the observed profiles of (y of

four different families of initial data with indicated initial data parameters. The plot is taken
490




Conclusions

A single scalar invariant is not enough to determine the
spacetime geometry unambiguously, but because we know
that { 1s the only nonvanishing component of the Riemann
tensor at the axis, the echoes also represent approximate
scaled copies of the same patch of spacetime. Because near
its maximum { changes only slowly in the z direction, it is
interesting that a similar but time-symmetric profile of £
appears at the axis for the Weber-Wheeler-Bonnor cylin-
drical GW pulse [24].

Conclusions.—Critical collapse of gravitational waves
has been studied for a long time with the hope that a clear,
universal, discretely self-symmetric structure will appear.
We showed that the first echoes in a near-critical collapse
exhibit only a partial similarity to the DSS behavior of a
massless scalar field. While we observed a universal profile
of the echo forming patches of strongest spacetime curva-
ture as approximate copies of a universal template, these
appear with apparently irregular delays and scales. Thus,
we did not observe a universal and regularly self-similar
solution mn the A —- A, limit, and the dimensionless
characteristics of the near-critical behavior seem to depend
on the ID family.
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