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A brief history

Well-defined notion of gravitational wave in full non-linear theory of 
general relativity for asymptotically flat space-time.

●

● Bondi and his collaborators provided a detailed analysis of 
gravitational waves in full non-linear theory along with a definition of 
energy carried away from an isolated system by gravitational radiation.

● One of the remarkable milestones in gravitational radiation 
theory!

H. Bondi, M.G.J. Vander Burg, A. W. K. Metzner - 1962
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A brief history

Bondi and his collaborators performed a systematic expansions of axis 
symmetric gravitational wave metric along outgoing null directions.

●

● Given an initial data on null hypersuface, solve Einstein’s equations.

● Deduce the asymptotic fall-off condition for the gravitational fields.

● As a supplementary condition obtain mass-loss 
formula.

 ‘News function’ - absolute square integrated 
over the sphere at infinity, measures the rate of 
energy loss by a gravitating system.
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Questions…

⇤● Given that cosmological observations suggest a positive    ,

How to study gravitational radiation?

● In (generalized) Harmonic gauge

● In Bondi gauge

● Solution of linearised EE in terms of source integral?

● Linearised fields in terms of source quadrupole moments?

● Power radiated quadrupole formula?

Is there any significant observable effect in orbital decay and orbital phase 
computation in a binary system?

How small are correction term? Order of magnitude?
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Questions…

Surprisingly this remained unsolved for 60 years!! Lots of Non-trivialities !!

how to generalise Bondi-Sachs’s formalism?

Mass-loss formula for           ?⇤ > 0

  Analogous ‘News tensor’?

Asymptotic fall-off condition for the gravitational fields?

Asymptotic symmetries?

A simpler version of the problem - Bondi-Sach’s formalism for linearised 
gravitational fields on de Sitter background. 

How to reconcile Bondi Gauge to generalised Harmonic gauge?
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                        Non-triviality for positive ⇤

● Structure of null infinity for ⇤ > 0 : space-likealters,
⇤ < 0 :  time-like

J +
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→

→

⌦
=
0

J +

J�

→

→

ñ

J→

⇤ > 0 ⇤ = 0 ⇤ < 0

● ⇤ = 0Standard framework does not extend from to ⇤ > 0 .



de Sitter space-time and patches 
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Conformal chart
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Linearised equation
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h̃µ⌫ � h̃ḡµ⌫
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Linearised equation :

h̃µ⌫ := hµ⌫ � 1

2
ḡµ⌫h , h := h↵� ḡ

↵�Define : , Bµ := r̄↵h̃
↵
µ
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2⇤⌘

3
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Choose a background metric : ḡµ⌫(x) gµ⌫(x) := ḡµ⌫(x) + ✏hµ⌫(x),



Retarded Green function - decoupled eqns
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• Having discussed the propagation of waves in de 
Sitter space, we need two more things to generalise 
the Einstein Quadrupole formula in de Sitter

• Source moments

• Particular solution of inhomogeneous wave equation 
in terms of source moments
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SOURCE MOMENTS

Mass moment :

Pressure moment :

x̄i := f i
↵x

↵ = �(⌘H)�1�
i
jx

j = a(t)xi ;

f↵
m := �H⌘ �↵m, ⌘ := �H�1 e�Ht;

⇢ : = T↵�f
↵
0f

�
0 , Pij := T↵�f

↵
if

�
j , p := Pij�

ij

Q̄

ij(t) :=

Z

(t)
d

3
x a

3(t) p(t, ~x) x̄i
x̄

j
.

Q

ij(t) :=

Z

(t)
d

3
x a

3(t) ⇢(t, ~x) x̄i
x̄

j
.



Inhomogeneous solution
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�ij(t, r) ⇡ 2

r ā

�
@2
tQij � 2H@tQij +H@tQ̄ij
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�
@2
tQij � 3H@tQij +H@tQ̄ij + 2H2Qij �H2Q̄ij

 

�2H2
�
@t0Qij � 2HQij +HQ̄ij

 ��
�1

Using conservation equation of de Sitter background in 
tetrad frame, relate source integral with moment 
variables.

●

G. Date and S. J. Hoque, Phys. 
Rev. D 94, 064039 (2016).

A. Ashtekar, B. Bonga and A. Kesavan, 
Phys. Rev. D 92, 044011 (2015).



Energy Propagation

• We use covariant phase space approach of Lee and 
Wald for linearised gravity in de Sitter

• We introduce symplectic structure on the space of 
linearised solutions

• For a linearised solution h, energy flux is
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ET = !(h,£Th)



 Energy flux in dS background
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● Time translation generator : Tµ = �H(⌘, xi)

● Conservation equation :

● Energy flux across 
3-dimensional hyper-surface :

0 =
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d⌃µ!

µ
,

Z

⌃
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Flux : constant physical radial distance
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rphy = |a|r := ⇢ :Trajectory of killing observer.
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h...
Qmn + 3HQ̈mn + 2H2Q̇mn +H ¨̄Qmn + 3H2 ˙̄Qmn + 2H3Q̄mn

itt
(tret) ,

S. J. Hoque and A. Virmani, 
Gen.Rel.Grav. 50, 40 (2018).

G. Date and S. J. Hoque, Phys. 
Rev. D 96, 044026 (2017).

A. Ashtekar, B. Bonga and A. Kesavan, 
Phys. Rev. D 92, 10432 (2015).



   Remarks :
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● Analogous to 
independence of 
flux in flat 
background

r
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●
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independent of 
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Modelling of compact binary in de Sitter background

How to model the compact binary in dS?
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➤

●
 

rph = const.



19

Modelling of source in de Sitter background

● Moments are defined in tetrad frame

● Attach a tetrad to the centre  of circular binary .

● In CM frame the system is equivalent to an effective one 
body problem with reduced mass      .µ

Qij
= µr2ph

0

@
cos

2  sin cos 0

sin cos sin

2  0

0 0 0

1

A

Mass quadrupole moment :●

           surface does not have compact support.● r = const.

represents circular orbit in de Sitter background.● rph = const.
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Power radiated by binary

For weakly stressed system neglecting pressure moment 
terms,

P =
32

5G

✓
GMc !gw

2

◆10/3
1 + 5H2!�2

gw + 4H4!�4
gw

�

H2!�2
gw ⇠ (�/LB)

2 ⇠ 10�42 � 10�44

⇠ 10�28 � 10�20

⇠ 10�18 � 10�12

for LIGO, 

for LISA, 

for PTA, 

f ⇠ 102 � 103Hz

f ⇠ 10�4 � 1 Hz

f ⇠ 10�6 � 10�9 Hz

S.J. Hoque and A. Aggarwal, 
IJMPD 28, 1950025 (2019)
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● In the weak field limit on de Sitter background the potential is Newtonian.

E = �GMµ

2R

dE

dt
= �

✓
G2M5

c
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◆1/3 2

3
!�1/3
gw !̇gw
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Z
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�1!gw
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15

12
2�1/3

�
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��5/3
!�5/3
gw

✓
� 1

5
+

5

11
H2!�2

gw � 21

17
H4!�4

gw + · · ·
◆
+ C

,

● Including back reaction of gravitational waves in presence of cosmological 
constant one obtains a phasing formula

Gravitational phasing formula
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Summary and outlook
Discussed linearised gravitational waves in de Sitter background in a 
generalised Harmonic gauge.

●

Obtain field in terms of quadrupole moment of the source.●
● Power radiated quadrupole formula and its application to binary system

● Interesting to explore how cosmological constant affects waveform. It will 
give a bound on cosmological constant from current observations.

●

Gravitational memory effect in de Sitter.

Gravitational radiation in dS in Penrose’s conformal language, linearisation 
stability and global hyperbolicity.

Ongoing work with P. Krtouš and C. Peón-Nieto

●
Ongoing work with G. Compère

● Gravitational waves in FLRW space-time.

Ongoing work with B. Bonga and B. Schneider
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Thank you
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Outline

●

● We wish to generalise Bondi’s mass loss formula for 
linearised gravitational field with a positive cosmological 
constant in covariant phase-space formalism.

● We will work in Bondi frame.

● asymptotic fall off condition for fields.

Discuss            limit.⇤ = 0



26

Set up for Bondi coordinates 

● Bondi coordinates are based on a family of outgoing null hypersurfaces.

@

@r

@
@u

◀

@

@x

A

● Hypersurfaces                    are null.
u = const

=) gab@au@bu = 0 =) guu = 0

● Two angular coordinates     , are 
constant along null rays.

x

A

=) g

ab
@au@bx

A = 0 =) guA = 0.

● gab and gab are related by gacgcb = �ab

=) grr = 0 = grA

● We construct Bondi coordinates for de Sitter.
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Metric in Bondi-Sachs coordinates 

Metric in Bondi-Sachs coordinates,●

ds

2 = �V

r

e

2�
du

2 � 2e2�dudr + r

2
�AB(dx

A � U

A
du)(dxB � U

B
du)

● varies along null rays, chosen to be an areal coordinate; r

● We will explore Einstein equations for linearized fields on de Sitter 
background. 

hab :=
dgab(�)

d�

����
�=0

gab(� = 0) := ḡabbackground ; perturbation

detgAB = r4 sin2 ✓
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Bondi gauge for linearized theory

● Bondi gauge condition for linearized fields 

hrr = 0 = hrA, �̊ABhAB = 0

We wish to explore linearised Einstein equation with Bondi 
metric,

●

Eab := Rab �
1

2
Rgab + ⇤gab = 0

● In Bondi coordinates de Sitter Background metric takes the form,

d̄s

2
= �

✓
1� ⇤r2

3

◆
du

2 � 2dudr + r

2
�̊ABdx

A
dx

B
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Einstein equations: systems of hierarchical PDEs

Eu
r = 0 =) @r� =

r

16
�AC�BD(@r�AB)(@r�CD)

@r�� = 0 =) �� = ��(u, xA)Linearisation:

●

Linearisation: @r[r
4@r(r

�2�guA)] = r2D̊F@r(r
�2�gAF )

Eu
A = 0 =) @r[r

4e�2��AB(@rU
B)] = 2r4@r

✓
1

r
DA�

◆
� r2�EFDE(@r�AF )●

Eu
u = 0 =) 2e�2�(@rV ) = R� 2�AB [DADB� +DA�DB�]

+
e�2�

r2
DA[@r(r

4UA)]� r4

2
e�2��AB(@rU

A)(@rU
B)� 2⇤r2

●

Linearisation: 2@r�V = �R� 1

r2
D̊A[@r(r

2�guA)]

● Four independent hyper surface equations,       Eu
a = 0

   Using gauge �� = 0 = �gur hab 7! hab + L⇠ ḡab ,   
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Solution for huA

Given the ansatz :

@r[r
4@r(r

�2�guA)] = r2D̊F@r(r
�2�gAF )solve ?

huA = r2
✓

(0)

ȟ uA +
1

2
D̊B

(-1)

ȟ AB r�2 +

✓
(-3)

ȟ uA +
2

9
D̊B

(-2)

ȟ AB(3 ln r + 1)

◆
r�3 + . . .

◆

hAB = r2
✓

(0)

ȟAB +

(-1)

ȟ AB

r
+

(-2)

ȟ AB

r2
+

(-3)

ȟ AB

r3
+ . . .

◆

● Given the ansatz       , hypersuface equations           fix the asymptotic fall 
off condition for other components of field.

hAB Eu
a = 0

● Similarly, solve for V
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Evolution equation for 

● EAB = 0

ȟABequation for

ȟAB

Traceless symmetric parts of gives evolution

r@r[r(@uȟAB)] +
1

2
@r[r

2(
⇤

3
r2 � 1)(@rȟAB)]� TS[D̊A(@r(r

2ȟAB))] = 0

(h
A
B
,M

,
(-
3)

ȟ uA
) (h

A
B
,M

,
(-
3)

ȟ uA
)

(
(0)

ȟ uA,
(0)

ȟAB = 0)

:= r�2hAB
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Non-polyhomogenous de Sitter

●

● To get rid of log term one needs to set                ,  for flat space-
time. In Bondi’s paper this condition is termed as outgoing radiation 
condition.

(-2)

ȟ AB = 0

Asymptotic analysis of this equation gives non trivial equations
⇤

3

(-2)

ȟ AB = 0

NO log term in de Sitter. De Sitter is non-polyhomogenous!!

● This result is true for full non-linear theory also.

A. Pole, K. Skenderis, M. Taylor -2019
G. Comp  re, A. Fiorucci, R Ruzziconi - 2019è

r@r[r(@uȟAB)] +
1

2
@r[r

2(
⇤

3
r2 � 1)(@rȟAB)]� TS[D̊A(@r(r

2ȟAB))] = 0

For de Sitter this is a consequence of equation of motion.●
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@u
(0)

ȟAB =
⇤

3

(-1)

ȟ AB + (D̊A

(0)

ȟ uB + D̊B

(0)

ȟ uA � �̊ABD̊
C

(0)

ȟ uC)

●           and          can not be zero simultaneously by a gauge 
transformation!!  Asymptotic symmetry group of de Sitter is not BMS.

(0)

ȟ uA

(0)

ȟAB

Asymptotic symmetry group is NOT BMS

r@r[r(@uȟAB)] +
1

2
@r[r

2(
⇤

3
r2 � 1)(@rȟAB)]� TS[D̊A(@r(r

2ȟAB))] = 0

Asymptotic analysis of this equation also gives,

● Whether this gauge condition is achieved by any physical space-time is 
difficult.

S. J. Hoque, A. Virmani - 2021
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Asymptotic expansion of linearised fields

hur = 0

hAB = r2
✓

(0)

ȟAB| {z }
=0

+

(-1)

ȟ AB

r
+

(-2)

ȟ AB| {z }
=0

r�2 +

(-3)

ȟ AB

r3
+ . . .

◆
,

huA = r2
✓

(0)

ȟ uA +
1

2
D̊B

(-1)

ȟ AB r�2 +
(-3)

ȟ uAr
�3 + . . .

◆
,

huu = rD̊A
(0)

ȟ uA +
M

r
� 1

2r2
D̊A

(-3)

ȟ uA + . . .
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Evolution equations for integration constant

,  gives the evolution equation for ● Euu = 0 huu

2@uM = @uD̊
AD̊B

(-1)

ȟ AB � ⇤D̊A
(-3)

ȟ uA

● EuA = 0 ,  gives the evolution equation for huA

3@u
(-3)

ȟ uA = D̊AM +
1

2
(D̊BD̊AD̊

C
(-1)

ȟ CB �4�̊D̊
C

(-1)

ȟ CA)� ⇤D̊B
(-3)

ȟ AB



Energy in the linearised theory

● When     is a time-translational symmetry of background, the 
numerical value of the integration is identified with the total 
energy of the field contained in    .

X

⌃

● The Hamiltonian for the linearised theory associated with a hyper 
surface    , and a vector field     reads,⌃ X

36

�̃ is linearised field,        is associated canonical conjugate momenta.⇡̃µ

H̃[⌃, X] :=

Z

⌃
H̃µd⌃µ

=
1

2

✓Z

⌃
!µ(�̃,LX �̃) d⌃µ �

Z

@⌃
X [�⇡̃µ]

A �̃Ad⌃�µ

◆

● Our approach differs from Ashtekar’s group work in boundary terms.
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Energy flux in the linearised theory

● Consider a family of hyper surfaces labelled by     and define,⌧

The integrand represents the flux of the energy through        when    is 
dragged along the flow of    .

@⌃ ⌃
X

!µ(�̃,LX �̃) := LX �̃A⇡̃A
µ � �̃ALX ⇡̃A

µUsing,

dH̃[⌃⌧ , X]

d⌧
=

1

2

d

d⌧

Z

⌃
!µ(�̃,LX �̃) d⌃µ � 1

2

Z

@⌃
LX

✓
X [�⇡̃A

µ]�̃A

◆
d⌃�µ

= �1

2

Z

@⌃
X [�!µ](�̃,LX �̃) d⌃�µ

�1

2

Z

@⌃

✓
X [�LX ⇡̃A

µ]�̃A +X [�⇡̃A
µ]LX �̃A

◆
d⌃�µ .

dH̃(⌃⌧ , X)

d⌧
= �

Z

@⌃⌧

X [�⇡̃A
µ]£X �̃Ad⌃�µ.
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Canonical energy for gravitational field

where:

hab solution of linearised vacuum Einstein equations,

Cu light cone                emanating from u = const r = 0

Cu,R light cone truncated at radius          r = R

S(R) sphere of radius R

Ec[h, Cu,R] =
1

64⇡

Z

Cu,R
ḡBE ḡFC(@uhBC@rhEF � hBC@r@uhEF )r

2 sin ✓drd✓d�

� 1

32⇡

Z

S(R)
P̄ r(bc)d(ef)hbcr̄dhef r2 sin ✓d✓d�
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Boundary term in canonical energy

In Bondi gauge boundary integral of                    becomes,● EC(h, Cu,R)

� ⇤R

192⇡

Z

S2

�̊AB �̊CD
(-1)

ȟ AC

(-1)

ȟ BD sin ✓d✓d�

� 1

64⇡

Z

S2

(̊�AB �̊CD
(-1)

ȟ AC

(-1)

@ uȟBD � 6̊�AB
(0)

ȟ uA

(-3)

ȟ uB) sin ✓d✓d�
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Renormalised energy and flux

We propose to introduce a renormalised canonical energy 

which has its own flux formula

dÊc[h, Cu]
du

= � 1

32⇡

Z

S2

(̊�AB �̊CD@u
(-1)

ȟ AC@u
(-1)

ȟ BD � 6̊�AB
(-3)

ȟ uA@u
(0)

ȟ uB) sin ✓d✓d�

Êc[h, Cu] :=
1

64⇡

Z

Cu

gBEgFC(@uhBC@rhEF � hBC@r@uhEF )r
2 sin ✓drd✓d�

� 1

64⇡

Z

S2

(̊�AB �̊CD
(-1)

ȟ AC@u
(-1)

ȟ BD � 6̊�AB
(0)

ȟ uA

(-3)

ȟ uB) sin ✓d✓d�

For          , we obtain linearised version of Bondi’s mass-loss formula.⇤ = 0



J +

@u

⇤ > 0⇤ = 0

u

=

c

o

n

s

t

@u

J +
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Summary

Asymptotic fall off condition for linearised gravitational field have been 
obtained in Bondi frame. Qualitatively different from ⇤ = 0 case.

●

● Due to different fall-off  asymptotic symmetry group is not BMS

● Bondi-Sachs coordinates are constructed for de Sitter.

● NO log term in de Sitter

● Interesting to generalise Bondi-Sachs formalism for FLRW case.

● A definition of candidate Energy and Energy flux have been obtained 
for linearised fields.

● How our solutions are related to other linearised solutions on dS 
background and quadrupole formula in de Sitter background.

A. Ashtekar, B. Bonga, A. Kesavan  -  2015

G. Date, Sk J. Hoque -  2015
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Covariant phase-space: Linearised Lagrangian

● Given a Lagrangian density L(�, @�) , the field equations are

EA := @µ

✓
@L

@�A
µ

◆
� @L

@�A
= 0 ; �A

µ := @µ�
A

Consider,● � as a one parameter family of field configuration.

Linearised field: �̃ :=
d�

d�
|�=0background: �(� = 0) = �̄ ,
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Covariant phase-space: Linearised Lagrangian

Linearised equation:●

@µ

✓
⇡A

µ
B
⌫@⌫ �̃

B + ⇡A
µ
B�̃

B

◆
=

✓
⇡B

µ
A@µ�̃

B + ⇡AB�̃
B

◆
+

dEA
d�

with,
⇡A

µ := @L
@�A

µ
, ⇡A := @L

@�A ,

⇡A
µ
B
⌫ := @2L

@�A
µ@�B

⌫
, ⇡A

µ
B := @2L

@�A
µ@�B , ⇡AB := @2L

@�A@�B

● Linearised Lagrangian density,  

L̃ =
1

2
⇡A

µ
B
⌫@µ�̃

A@⌫ �̃
B + ⇡A

µ
B@µ�̃

A�̃B +
1

2
⇡AB�̃

A�̃B +
dEA
d�

�̃A
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Covariant phase-space: Hamiltonian density

● Hamiltonian density for L  and a vector field X ,

Hµ[X] =
@L

@�A
µ
LX�A �XµL

↙

● Corresponding Hamiltonian density for Linearised 
Lagrangian,

H̃µ[X] =
@L̃

@�̃A
µ

LX �̃A �XµL̃

✓µ(�,LX�)

�L = EA(�)��
A + @µ

✓
@L

@�A µ
��A

◆
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Covariant phase-space: presymplectic current

● Consider two parameter family of field configuration

�A(�, ⌧) ,

In Wald-Zoupas terminology,●

!µ

✓
d�

d�
,
d�

d⌧

◆
:=

d�A

d⌧

d⇡µ
A

d�
� d�A

d�

d⇡µ
A

d⌧

On linearised field equations, presymplectic 
current is conserved.

●

!µ(�, �1�, �2�) := �1✓
µ(�, �2�)� �2✓

µ(�, �1�)

@µ!
µ =

dEA
d�

d�A

d⌧
� dEA

d⌧

d�A

d�



Relation between Hamiltonian and presymplectic current
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● We wish to ask how canonical energy of linearised theory 
is related to presymplectic current.

How does flux law related to presymplectic current?

● From the conservation of presymplectic current, naively  
one would expect flux should be related to !i

● The relation between canonical energy of linearised 
theory and presymplectic current can be established by 
taking the second variation of Hamiltonian vector density 
in original theory.

@t

Z
!

t
d

3
x = �

Z
!

i
nid

2
S
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First variation of Hamiltonian

dHµ[X]

d�
= LX�A d⇡µ

A

d�
� LX⇡µ

A

d�A

d�
+ 2@�

✓
X [�⇡µ]

A

d�A

d�

◆

+Hµ[
dX

d�
] +XµEA d�A

d�

● Vector field X does not depend on the field 

configurations: dX

d�
= 0

Hµ[X] :=
@L

@�A
µ
LX�A �XµL

:= ⇡µ
ALX�A �XµL



Second variation of Hamiltonian
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second variation of Hamiltonian can also be written in 
terms linearised Hamiltonian density,

d2Hµ

d�2

����
�=0

= LX �̃A⇡̃µ
A + LX�A d

d�
⇡̃µ
A � LX ⇡̃µ

A�̃
A � LX⇡µ

A

d

d�
�̃A

+ 2@�

✓
X [�⇡̃µ]

A �̃A �X [�⇡µ]
A

d�̃A

d�

◆

●

d2Hµ

d�2

����
�=0

= LX�A d⇡̃µ
A

d�
� LX⇡µ

A

d�̃A

d�
+ 2H̃µ � 2@�

✓
X [µ⇡�]

A

d�̃A

d�

◆

● Comparing these two,

H̃µ[X] =
1

2

✓
LX �̃A⇡̃µ

A � LX ⇡̃µ
A�̃

A

| {z }
!µ(�̃,LX �̃)

◆
+ @�

✓
X [�⇡̃µ]

A �̃A

◆
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Summary and questions

Asymptotic fall off condition for linearised gravitational fields are Qualitatively 
different from ⇤ = 0 case.

●

⇤ = 0● Proposed renormalised energy and flux in the limit 

become classical Bondi quantities.

● A definition of candidate Energy and Energy flux have been obtained 
for linearised fields.

Our works can be extended in several directions:

adding matter fields, generalisation to FLRW case●
● Implication of new term in radiation reaction, and in the 

gravitational wave observations.

● How our solutions are related to other linearised 
solutions on dS background. 

A. Ashtekar, B. Bonga, A. Kesavan  -  2015

G. Date, Sk J. Hoque -  2015
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Based on:  Phys.Rev.D 103 (2021) 6, 064008 with Piotr T. Chruściel, Tomasz Smolka,
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Outline

●

● We wish to generalise Bondi’s mass loss formula for linearised 
gravitational field with a positive cosmological constant in covariant 
phase-space formalism.

● We will work in Bondi frame.

● Asymptotic fall off condition for fields.

Discuss            limit.⇤ = 0

● A simpler version of the problem - linearised field in de Sitter 
background.
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Z

⌃⇢

d⌃↵!
↵ =

Z +1

�1
d⌧

Z

S2

d⌦ r2a3
✓
H⇢ !0 +

!ixi

r

◆

= H⇢2
Z +1

�1
d⌧

Z

S2

d⌦

 � d

d⌧
�tt
ij

��
r@⌘�

tt
kl + ⌘@r�

tt
kl

��
�ik�jl

and for rapidly varying source, @r�ij ⇡ �@⌘�ij
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Flux through null hyper surfaces

Null 
hyper surfaces 

⌘ + ✏r + � = 0
⌘
=
�
r

⌘
�
r +

�
=
0

⌘
=
�1

, r
=
1

:

Null
normals

: nµ = �(1, ✏x̂i)

Z
d⌃↵!

↵ =

Z �2

�1

d�

Z

S2

d⌦ r2a2 �

✓
!0 + ✏

!ixi

r

◆

=

Z �2

�1

d�

Z

S2

d⌦ [�H]


(1 + ✏)

8⇡

⌘2

⌘ � r
Rtt

ijRtt
kl

�
�ik�jl
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Remarks :
Identifying null normal of cosmological horizon with 
Killing vector, � = �(Hr)�1 , flux  matches with 
rphy = const hyper surface.

●

● Vanishing flux across outgoing null hypersurface 

⟹ sharp energy propagation

Radiated power can be defined on cosmological horizon●

P(⌧) :=
dE

d⌧
=

1

8⇡

Z

S2

d⌦ Rtt
ijRtt

kl �
ik�jl

Rtt
mn :=

h...
Qmn + 3HQ̈mn + 2H2Q̇mn +H ¨̄Qmn + 3H2 ˙̄Qmn + 2H3Q̄mn

itt
(tret) ,
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LINEARISED THEORY

Choose a background metric : ḡµ⌫(x)

Define perturbation as : gµ⌫(x) := ḡµ⌫(x) + ✏hµ⌫(x)

Gauge transformations :

Physical perturbations : solutions of the linearised Einstein
solution modulo the gauge transformations.

For explicit calculation we need to choose coordinates, 
choose a gauge, identify region of interest and compute 
observables.

�hµ⌫ := L⇠ ḡµ⌫ = r̄µ⇠⌫ + r̄⌫⇠µ

�

TT
ij ⇡ ⇤ kl

ij �kl, ⇤ kl
ij :=

1

2
(P k

i P

l
j + P

l
i P

k
j � PijP

kl) , P

j
i := �

j
i � x̂ix̂

j
.
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Cosmological Horizon : effective null infinity

• No incoming radiation + conservation 

⟹ Energy flux at cosmological horizon exactly 
matches with that of at J +

• For rapidly varying compact 
source quadrupole power can 
be evaluated at the 
cosmological horizon

J +

i+

r
=

0

i�

H+

H�

✘

✘

✘

✘

✘

Observer at finite physical 
distance away from source 
must remain confined within 
the cosmological horizon.

•

S. J. Hoque and A. Virmani
in preparation 


