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Introduction

• Self-force overview
• Issues encountered at second order
• Overview of the highly regular gauge and advantages
• Derivation of second-order stress-energy tensor – the Detweiler stress-energy tensor

• Using Detweiler canonical defintion in EFEs
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Self-Force Overview

Image adapted from Barack & Pound, 2018, arXiv:1805.10385

• Power series in mass ratio ϵ := m/M

gexact
µν = gbg

µν + ϵh1
µν + ϵ2h2

µν + . . .

• Equation of motion

D2zµ

dτ
= ϵfµ

1 + ϵ2fµ
2 + . . .

fµ
n = fµ

n,cons + fµ
n,diss
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What Order is Required?

• Second order perturbation theory crucial for precise parameter extraction from
EMRIs [Hinderer and Flanagan, 2008, 0805.3337]

• How do we know this? Heuristically: [Pound, 2012, 1206.6538]

• We have a worldline z(t) that has acceleration a with error δa
• Error in position is δz ∼ t2δa
• As EMRIs evolve over t ∼ 1/ϵ, the error is δz ∼ δa/ϵ2

• For δz ≪ 1, we require δa ∼ ϵ3

• Thus we need to calculate the force to second order in the mass ratio
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More Rigorously... [Hinderer and Flanagan, 2008, 0805.3337]

• For evolution time t ∼ 1/ϵ the phase has expansion

φ = 1
ϵ

(
φ0 + ϵφ1 + O

(
ϵ2

))

• φ0 is the adiabatic term constructed from ⟨fµ
1,diss⟩

• φ1 is the post-adiabatic term constructed from ⟨fµ
2,diss⟩, fµ

1,cons and oscillatory part of
fµ

1,diss
• For error ≪ 1, we need φ0 and φ1
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Matched Asymptotic Expansions

body zone

external universe

buffer
region

Image credit: Barack & Pound, 2018, arXiv:1805.10385

gexact = gobj + ϵH1 + ϵ2H2

= ∼ ∼ ∼

gbg ∼ 1 r r2

+
ϵh1 ∼ ϵ

r ϵ ϵr
+

ϵ2h2 ∼ ϵ2

r2
ϵ2

r ϵ2
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Regular and Singular Fields
• Outside object, metric perturbations split into two fields, hµν = hR

µν + hS
µν [Pound, 2012,

1206.6538]

• Singular field contains information about small object’s multipole structure:

• Generically

hS
µν ∼ ϵ

m

r
+ ϵ2 m2 + Ma + Sa

r2 + O
(
ϵ3

)

• Regular field is vacuum solution, δGµν [hR] = 0, and smooth on worldline:

• Contributes to external tidal moments that small object feels
• Form of Taylor expansion

hRn
µν = hRn

µν |γ + hRn
µν,a|γxa + 1

2hRn
µν,ab|γxaxb + O

(
r3

)
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Second-Order EFEs and EoM

• Through second order, EFEs take the form:

δGµν [h1] = 8πT µν
1

δGµν [h2] = 8πT µν
2 − δ2Gµν [h1, h1]

where T µν
1 is the stress-energy of a point particle

• Equation of motion for non-spinning, spherically symmetric small object given by
[Pound, 2012, 1201.5089 & 2017, 1703.02836]

D2zµ

dτ 2 = −1
2P µα

(
gα

δ − hRδ
α

)(
2hR

δβ;γ − hR
βγ;δ

)
uβuγ + O

(
ϵ3

)
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Generalised Equivalence Principle [Pound, 2017, 1703.02836]

• Small object ̸= geodesic in gexact
µν or gbg

µν

• Instead, it is a geodesic in effective metric

g̃µν = gbg
µν + hR

µν

• Effective metric is a smooth, vacuum solution to EFEs

Gµν [g + hR] = O
(
ϵ3

)
• Can rewrite equation of motion as

D̃2zµ

dτ̃ 2 = O
(
ϵ3

)
• This is the generalised equivalence principle
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Solving the Field Equations
• Only used method at second order is a puncture scheme

• Here, replace singular field with a local approximation, i.e. hP
µν ≈ hS

µν

• Define residual field, hR
µν := hµν − hP

µν so that hR
µν ≈ hR

µν near γ

• EFEs and EoM become

δGµν [hR1] = − δGµν [hP1]
δGµν [hR2] = − δ2Gµν [h1] + δGµν [hP2]

D2zµ

dτ 2 = − 1
2P µα

(
gα

δ − hRδ
α

)(
2hR

δβ;γ − hR
βγ;δ

)
uβuγ + O

(
ϵ3

)
• Also requires the use of a two-timescale expansion based on a “fast time” and “slow

time” to capture processes happening on the orbital timescale and the
radiation-reaction timescale [Miller & Pound, 2021, 2006.11263]
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Current Status

• First order:

• Full inspiral driven by first-order self-force for spinning small object on generic orbit in
Schwarzschild [Warburton et al., 2012, 1111.6908; Osburn et al., 2016, 1511.01498; Warburton et al., 2017, 1708.03720; van de Meent

& Warburton, 2018, 1802.05281; and others]

• Self-force along generic bound orbit in Kerr [van de Meent, 2018, 1711.09607]

• Corrections due to spin have been derived e.g. [Mathews et al., 2022, 2112.13069; Skoupý & Lukes-Gerakopoulos, 2021,

2102.04819 & 2022, 2201.07044]

• Effect of resonances is being investigated e.g. [Lukes-Gerakopoulos & Witzany, 2021, 2103.06724]
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• Corrections due to spin have been derived e.g. [Mathews et al., 2022, 2112.13069; Skoupý & Lukes-Gerakopoulos, 2021,

2102.04819 & 2022, 2201.07044]

• Effect of resonances is being investigated e.g. [Lukes-Gerakopoulos & Witzany, 2021, 2103.06724]
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Current Status (cont.)

• Second order (quasicircular orbits in Schwarzschild):

• Binding energy [Pound et al., 2020, 1908.07419]

• Gravitational wave energy flux [Warburton et al., 2021, 2107.01298]

• Waveforms [Wardell et al., 2021, 2112.12265]
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Problems at Second Order

• Major hurdle is the strong divergences on the small object’s worldline

• Generically, hS1
µν ∼ m/r and hS2

µν ∼ m2/
r2

• Second-order EFEs

δGµν [h2] = −δ2Gµν [h1, h1], r > 0

where δ2G[h] ∼ h∂2h + ∂h∂h

• hS1
µν ∼ 1/r =⇒ δ2Gµν [hS1] ∼ 1/r4

• Strong divergence causes problems when decomposing into modes [Miller et al., 2016, 1608.06783]

• Ill-defined on any domain including the worldline, r = 0
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Singular Field Divergence [Pound, 2017, 1703.02836]

• However, in a class of highly regular gauges, this is less singular

• hS2
µν = hSR

µν + hSS
µν

• hSR
µν ∼ mhR1

µν /r and hSS
µν ∼ m2r0

• Tableau shows generically hS2
µν ∼ 1/r2

• Specialise to a non-spinning, spherically symmetric small object
• This is described by Schwarzschild so has line element

ds2 = −
(

1 − 2m

r

)
dv2 + 2 dv dr + r2 dΩ2

• Linear in 1/r

• Impose light-cone gauge condition, hS2
µν ∼ r0

• Not practical as imposes hR
µν |r=0 = hR

µν;ρ|r=0 = 0
• Transform to practical gauge
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Highly Regular Gauge [SDU & Pound, 2021, 2101.11409]

• We call this practical gauge the highly regular gauge

• The transformation is
hS2,HR

µν︸ ︷︷ ︸
O(1/r)

= hS2,LC
µν︸ ︷︷ ︸

O(r0)

+ Lξ1hS1,LC
µν︸ ︷︷ ︸

O(1/r)

• To find form of gauge vector, solve

hR1
µν = hR1,LC

µν + Lξ1gµν

• Solve for ξ1
µ as a function of hR1

µν , i.e. ξ1
µ[hR1]

• Impose smoothness and preserve worldline position, ξa
n|γ = 0

• Can then use this to calculate hS2,HR
µν

• Expression is in Fermi–Walker coordinates, upcoming paper will provide the
expressions in covariant form using methods of [Pound & Miller, 2014, 1403.1843]
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Structure of Highly Regular Gauge

• Based on preserving local lightcone
structure

• Gauge conditions:

hHR
µν kν = 0 hHR

µν eµ
Aeν

BΩAB = 0

kµ is a future-directed null vector and
ΩAB is metric on S2

Local lightcone structure around worldline, γ. Based on image by Adam Pound.
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Distributional Second-Order EFEs [SDU & Pound, 2021, 2101.11409]

• In HR gauge,

δGµν [ hSS︸︷︷︸
O(r0)

] = − δ2Gµν [hS1, hS1]︸ ︷︷ ︸
O(1/r2)

, ∀r

δGµν [ hSR︸︷︷︸
O(1/r)

] = −2 δ2Gµν [hR1, hS1]︸ ︷︷ ︸
O(1/r3)

=: −2Qµν [hS1], ∀r

• Second-order EFEs become

δGµν [h2] + δ2Gµν [hR1] + δ2Gµν [hS1] + 2Qµν [hS1] = 0, r > 0
• All terms are well-defined as distributions!
• Therefore

δGµν [h2] + δ2Gµν [hR1] + δ2Gµν [hS1] + 2Qµν [hS1] = 8πT µν
2 , ∀r
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O(1/r2)

, ∀r

δGµν [ hSR︸︷︷︸
O(1/r)

] = −2 δ2Gµν [hR1, hS1]︸ ︷︷ ︸
O(1/r3)

=: −2Qµν [hS1], ∀r

• Second-order EFEs become

δGµν [h2] + δ2Gµν [hR1] + δ2Gµν [hS1] + 2Qµν [hS1] = 0, r > 0

• All terms are well-defined as distributions!
• Therefore

δGµν [h2] + δ2Gµν [hR1] + δ2Gµν [hS1] + 2Qµν [hS1] = 8πT µν
2 , ∀r
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Detweiler Stress-Energy Tensor [SDU & Pound, 2021, 2101.11409]

• Express T µν
2,HR in terms of transformation from light-cone gauge

T µν
2,HR = T µν

2,LC︸ ︷︷ ︸
=0

+Lξ1T µν
1

• Calculate Lξ1T µν
1 in terms of ξ1

µ [Pound, 2015, 1506.02894]

T µν
2,HR = −m

2

∫
uµuν

(
gαβ − uαuβ

)
hR1

αβ δ4(x, z) dτ

• The total T µν is

ϵT µν
1 + ϵ2T µν

2 = m
∫

γ
ũµũν δ4(x − z)√

−g̃
dτ̃ + O

(
ϵ3

)
• Stress-energy tensor of a point particle in g̃µν = gµν + hR

µν

• Confirms Detweiler’s conjecture in [Detweiler, 2012, 1107.2098]
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Distributional Sources [SDU & Pound, 2021, 2101.11409]

• Motivated by HR gauge, in the Lorenz gauge we define

δ2Gµν [hS1, hS1] := −δGµν [hSS], ∀r

• hSS
µν only defined as local expansion so localise to infinitesimal region around γ

• Define
δ2Gµν [h1, h1] := lim

s→0
δ2Gs

µν [h1, h1]

where

δ2Gs
µν [h1, h1] := (−δGµν [hSS] + 2δ2Gµν [hS1, hR1] + δ2Gµν [hR1, hR1])θ(s − r)

+ δ2Gµν [h1, h1]θ(r − s)

Samuel Upton (ASU) Gravitational Self-Force czechLISA (23 January 2023) 19 / 21



Distributional Sources [SDU & Pound, 2021, 2101.11409]

• Motivated by HR gauge, in the Lorenz gauge we define

δ2Gµν [hS1, hS1] := −δGµν [hSS], ∀r

• hSS
µν only defined as local expansion so localise to infinitesimal region around γ

• Define
δ2Gµν [h1, h1] := lim

s→0
δ2Gs

µν [h1, h1]

where

δ2Gs
µν [h1, h1] := (−δGµν [hSS] + 2δ2Gµν [hS1, hR1] + δ2Gµν [hR1, hR1])θ(s − r)

+ δ2Gµν [h1, h1]θ(r − s)

Samuel Upton (ASU) Gravitational Self-Force czechLISA (23 January 2023) 19 / 21



Distributional Sources [SDU & Pound, 2021, 2101.11409]

• Motivated by HR gauge, in the Lorenz gauge we define

δ2Gµν [hS1, hS1] := −δGµν [hSS], ∀r

• hSS
µν only defined as local expansion so localise to infinitesimal region around γ

• Define
δ2Gµν [h1, h1] := lim

s→0
δ2Gs

µν [h1, h1]

where

δ2Gs
µν [h1, h1] := (−δGµν [hSS] + 2δ2Gµν [hS1, hR1] + δ2Gµν [hR1, hR1])θ(s − r)

+ δ2Gµν [h1, h1]θ(r − s)

Samuel Upton (ASU) Gravitational Self-Force czechLISA (23 January 2023) 19 / 21



Distributional Sources (cont.)

• Leads to distributionally well-defined equations in Lorenz gauge

δGµν [h2] = 8πT 2
µν − δ2Gµν [h1, h1]

• δ2Gµν [h1, h1] will diverge when integrating over it to solve for h2
µν

• Using distributional definition, we get a counter term that cancels this divergence

δGµν [h2] = 8π(T 2
µν − T Q♭♭

µν ) + lim
s→0

[
8πT counter

µν − θ(r − s)δ2Gµν [h1, h1]
]

where
T counter

µν = m2

6s

∫
(7gµν − 2uµuν)δ4(x, z) dτ
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Summary

• Provided an overview of self-force methods and current state of the field

• Outlined benefits of the highly regular gauge and motivation for introduction

• Demonstrated how to derive the metric perturbations in the HR gauge

• Showed how HR gauge leads to well-defined second-order EFEs

• Derived the Detweiler stress-energy tensor – point particle in effective spacetime
• Showed how this can be used in a practical way to solve for the second-order metric

perturbations
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