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Recent Research Questions

How does an Unruh-DeWitt detector respond near an extremal
black hole?1

How do we define surface gravity and temperature in dynamical
spacetimes?2

What can a study of particle detection tell us about the early
universe?

1Based on the article Phys.Rev.D 105 (2022) 8, 085001 arXiv:2109.04486 (A.C. in
collaboration with Dr Peter Taylor, DCU).

2Phys.Rev.D 105 (2022) 12, 123513 arXiv:2204.00359 (A.C).
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Current Research Questions

What can a study of particle detection tell us about the early
universe?

General idea: to assume a non-singular bouncing cosmology
and use this as a ‘playground’ to study quantum phenomena
and help understand the early universe by asking if we can:

(a) highlight disparities between singular and non-singular
theories? Are these potentially observable?

(b) shed light on pre-bounce physics? (i.e. the equation of
state pre-bounce)

(c) better understand the importance of quantum effects at
early times?
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Outline of talk

1. Model:
Quantum-corrected3 non-singular bouncing cosmology

2. Framework:
The Unruh-DeWitt particle detector model

3. Results:
From an analytic model towards more realistic measuring
scenarios

3with the correction originating from Loop Quantum Cosmology e.g. [Rovelli &
Wilson-Ewing Phys.Rev.D 90 (2014) 2, 023538]



The cosmological model



Cosmological model
Overview

We work within the framework of the (flat)
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)
(
dr2 + r2dΩ2

)
,

where, in our model, the evolution of the universe is divided
into four eras

(i) a pre-bounce contraction phase

(ii) a quantum-corrected radiation-dominated bounce phase

(iii) a matter-dominated era

(iv) a dark energy dominated era at late times
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Cosmological model
Classical regions

▶ We assume that the dynamics of the classical regions of the
universe are captured accurately by the classical Friedman
equation

H2 =
κρ

3
+

Λ

3
− k

a2
, ρ =

∑
i

ρi, H =
ȧ

a
.

▶ In our model, the classical regions are

(i) a pre-bounce contraction phase
(ii) a quantum-corrected radiation-dominated bounce phase
(iii) a matter-dominated era
(iv) a dark energy dominated era at late times

▶ We approximate the scale factor in each era by the
dominant form in that era.
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ȧ

a
.

▶ In our model, the classical regions are

(i) a pre-bounce contraction phase
(ii) a quantum-corrected radiation-dominated bounce phase
(iii) a matter-dominated era
(iv) a dark energy dominated era at late times

▶ We approximate the scale factor in each era by the
dominant form in that era.



Cosmological model
Classical regions

For example, in the matter-dominated era, the classical
Friedmann equation

H2 =
κρ

3
+

Λ

3
− k

a2
,

reduces to(
ȧ

a

)2

=
κρ

3
=⇒ a(t) =

(
αm +

3

2

√
κρm
3

t

)2/3

,

when combined with the equation of state w = p/ρ and the
continuity equation

ρ̇+ 3H(1 + w)ρ = 0 =⇒ ρ(t) ∝ a−3(1+w),

where w = 0 is the equation of state parameter for matter.
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Cosmological model
Classical regions

Indeed, the general form for the dominant scale factor in the
classical regions with w > −1 is given by

a(t) =

(
αi ±

3

2
(1 + wi)

√
κρi
3

t

)2/3(1+wi)

for i = {c,m}.

while at late times (for w = −1) we have

ȧ

a
=

√
Λ

3
=⇒ a(t) = αΛe

√
Λ
3
t
,

which is, of course, the scale factor for de Sitter space.



Cosmological model
Classical regions

a(t) =

(
αi ±

3

2
(1 + wi)

√
κρi
3

t

)2/3(1+wi)

for i = {c,m}.

▶ Here we find our first free parameter in the model, namely,
the equation of state parameter wc in the contraction
phase.

▶ We wish to explore whether a study of particle detection
can lead to observable signals of the equation of state
pre-bounce

▶ Question 1: can disparities be observed between various
bouncing models – characterised by different choices of wc?
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Quantum corrected bounce phase
In the radiation-dominated era which surrounds the bounce at
t = 0, the classical Friedmann equation receives a correction

H2 =
κ

3
ρ(t)

(
1− ρ(t)

ρcrit

)
,

which originates from Loop Quantum Cosmology and has been
argued to accurately capture quantum gravity effects in the
early universe.

Again, we solve to find

a(t) =

(
Ωcrit +

(√
a4b − Ωcrit + 2

√
κρr
3

t

)2
)1/4

,

which we have expressed in terms of the critical density
parameter

Ωcrit =
ρr
ρcrit

,

and where ab = a(0) is the value of the scale factor at the
bounce.
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Quantum corrected bounce phase
To realise a bounce, the scale factor

a(t) =

(
Ωcrit +

(√
a4b − Ωcrit + 2

√
κρr
3

t

)2
)1/4

,

must conform to the bounce conditions

H(t)
∣∣
t=0

= 0 and Ḣ(t)
∣∣
t=0

> 0,

which, essentially, dictates that the Hubble parameter changes
sign across the bounce.

From the first of these we see that at t = 0, we require

H(0) = 0 =⇒ Ωcrit = a4b ,

so that

a(t) =

(
ab +

4κρr
3

t2
)1/4

.
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Cosmological Model
Overview

In terms of dimensionless time T = (4.7)t/tm we can write our scale
factor across the entire evolution as the piecewise function

a(T ) =


ar
(
1− Ω̄c(w)(T − Tr)

)2/3(1+wc)
T < Tr

ab
(
1 + Ω̄rT

2
)1/4

Tr ≤ T < Tm

am
(
1 + Ω̄m(T − Tm)

)2/3
Tm ≤ T < TΛ

aΛ eΩ̄Λ(T−TΛ) T ≥ TΛ

,

where we have defined the ‘density parameters’

Ω̄c(w) ≡
3

2
(tm/b)(1 + wc)a

−3(1+wc)
2

r

√
κρr
3

, Ω̄r ≡ (tm/b)2

a4b

4κρr
3

,

Ω̄m ≡ (tm/b)

a
3/2
m

3

2

√
κρm
3

, Ω̄Λ ≡ (tm/b)

√
Λ

3
,

for convenience.
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Continuity dictates

ar = ab(1+Ω̄rT
2
r )

1
4 , am = ab(1+Ω̄rT

2
m)

1
4 , aΛ = am

(
1 + Ω̄m(TΛ − Tm)

) 2
3 ,

where a(Tm) ≡ am is the value of the scale factor at T = Tm, etc.,
while smoothness of the scalar factor further imposes

Ω̄c(w) = −3(w + 1)Ω̄rTr

4
(
1 + Ω̄rT 2

r

) , Ω̄m =
3Ω̄rTm

4
(
1 + Ω̄rT 2

m

) , Ω̄Λ =
2Ω̄rTm

4 + Ω̄r(3TΛ + Tm)Tm
.
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,

▶ Thus, all Ω̄i terms are related to Ω̄r which is proportional to the
radiation density parameter and is constrained by observation,

▶ while all ai constants are related to ab, which signifies the ‘size’
of the bounce ‘throat’.

▶ This is the second free parameter in the model and gauges the
importance of quantum effects at early times.

▶ Question 2: How important are quantum effects in the early
universe?
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What is the Unruh-DeWitt particle detector
model?



What is the Unruh-DeWitt particle detector model?

▶ Picture a simple, idealised quantum mechanical measuring
device travelling through spacetime on a given
trajectory.

▶ Think of this measuring device as a 2-level atom where
interaction between this atom and the quantum field
governs the transition from ground state to excited state
and vice versa.

▶ We interpret this transition as the device registering a
‘particle’ and as such call the device a particle detector. We
may then say that

a particle is what a particle detector detects!
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What is the Unruh-DeWitt particle detector model?

▶ Just as an electron moves from its ground to its excited
state through the absorption of a photon...

▶ The absorption of field quanta by the atom can promote
the atom from ground state to excited state .

▶ We interpret this atomic excitation as a detector
registering a particle.

▶ Conversely, the detector can de-excite by emitting quanta.
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Particle Detector Theory & Response
Suppose that the particle detector travels along a world line
xµ(τ). Interaction between the detector and the quantum field
φ̂(x) is governed by the Hamiltonian4

Hint = cχ(τ)µ̂(τ)φ̂(x).

Interaction is turned on and off via the switching function χ(τ).
The probability that the detector will transition from ground
state to excited state is described by

P (ω) = c2|⟨E|µ(0)|E0⟩|2F(ω),

where the response function is defined via

F(ω) = 2 lim
ϵ→0+

ℜ
∫ ∞

−∞
duχ(u)

∫ ∞

0
dsχ(u− s)e−i ω sWϵ(u, u− s).

At the sharp-switching limit, the transition rate is

Ḟτ (ω) = 2

∫ ∆τ

0
ds

(
cosωs W (τ, τ − s) +

1

4π2s2

)
− ω

4π
+

1

2π2∆τ
.

4c is a coupling constant and µ̂(τ) the detector’s monopole moment operator.
J. Louko, A. Satz, Classical and Quantum Gravity 25 055012 (2018).



Particle detector theory
Analytic model

▶ Recall that in our analytic model we have assumed that the
dominant scale factor for each cosmological era is the entire
contribution for that era.

▶ This allows us to have better control over the transition
rate integral as it passes through intervals.

▶ For a comoving (t = τ) detector, the transition rate is given
by

Ḟ(ω) =
1

2π2

∫ ∆τ

0
ds

(
cosωs

σ2(τ, s)
+

1

s2

)
+

1

2π2∆τ
− ω

4π
,

where

σ2(τ, s) = −a(τ)a(τ − s) [η(τ)− η(τ − s)]2 ,

encodes the spacetime and trajectory

η(τ) =

∫
dτ

a(τ)

of the detector.
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Particle detector theory

We must carefully separate the integral into intervals so that
the correct form of the scale factor (and conformal time
trajectory) enters into the integral at the appropriate time.

e.g. contraction phase −→ radiation-dominated era:

Ḟcr(ω) =
1

2π2

[∫ τr

τ0

ds
cos(ωτ − ωs)

σ2
cr(τ, τ − s)

+

∫ τ

τr

ds

(
cos(ωτ − ωs)

σ2
rr(τ, τ − s)

+
1

(τ − s)2

)]
+

1

2π2

(
1

τ − τr

)
− ω

4π
,

with
σ2
ij(τ, s) = −aj(τ)ai(τ − s) (ηj(τ)− ηi(τ − s))

2
,



Particle detector theory

We must carefully separate the integral into intervals so that
the correct form of the scale factor (and conformal time
trajectory) enters into the integral at the appropriate time.

e.g. contraction phase −→ Dark Energy dominated era:

ḞcΛ(ω) =
1

2π2

[∫ τr

τ0

ds
cos(ωτ − ωs)

σ2
cΛ(τ, τ − s)

+

∫ τm

τr

ds
cos(ωτ − ωs)

σ2
rΛ(τ, τ − s)

+

∫ τΛ

τm

ds
cos(ωτ − ωs)

σ2
mΛ(τ, τ − s)

+

∫ τ

τΛ

ds

(
cos(ωτ − ωs)

σ2
ΛΛ(τ, τ − s)

+
1

(τ − s)2

)
+

1

τ − τΛ

]
− ω

4π
,

with
σ2
ij(τ, s) = −aj(τ)ai(τ − s) (ηj(τ)− ηi(τ − s))

2
,



Early results



General Features



The equation of state in the contraction phase

Blue: wc = 1/3, Yellow: wc = 4, Green: wc → −1
Cai et. al Phys.Rev.D 87 (2013) 8, 083511; Steinhardt and Ijjas Class.Quant.Grav. 35 (2018)
13, 135004



The equation of state in the contraction phase

Blue: wc = 1/3, Yellow: wc = 4, Green: wc → −1



Observable signals of non-singular theories?

▶ Both detectors are released shortly after t = 0

▶ Disparities can be observed so long as the bounce size is sufficiently small



Beyond the toy model



Beyond the toy model
Summary and outlook

▶ Through a study of particle detection we managed to

(i) highlight disparities between theories with different
pre-bounce physics

(ii) and identify regions of the parameter space where
disparities between singular and non-singular theories are
most pronounced.

within an analytic ‘toy model’.

▶ In this model we assumed that a detector was released and
began detecting pre-bounce.
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Beyond the toy model
Summary and outlook

▶ To go beyond this analytic model and into more realistic
measuring scenarios we require a numerical model.

▶ This is because the analytic model assumes (rather crudely)
that only the dominant form of the scale factor describes
the spacetime in each era whereas a numerical model can
allow subdominant scale factors to contribute.

▶ In the numerical model, the Wightman two-point function
will ‘see’ the history of the spacetime even for a detector
which begins measuring today.

▶ Early signs are good in that we can see disparities in
particle rate between singular and non-singular theories but
it remains to be seen whether such disparities could truly be
observed!
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Additional slides



Cosmological Model
Global description of the universe

Our model has the modified density parameter equation

1 = Ω
(c)
0 +Ω

(r)
0 (1− Ωcrit) + Ω

(m)
0 +Ω

(Λ)
0 ,

where all parameters are evaluated today.

▶ We can view this equation as a cosmological balancing
equation which balances the makeup of the universe in
terms of radiation, matter, and dark energy.

▶ In our quantum-corrected model we have both a correction
to the radiation density via Ωcrit = a4b and some additional
energy or matter which enters through the contraction

phase density Ω
(c)
0 , the precise nature of which depends on

the choice of equation of state parameter in the contraction
phase wc.
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