

czechLISA

Czech participation in the LISA mission

Alexandre M. Pombo

czechLISA

Czech participation in the LISA mission

Alexandre M. Pombo

czechLISA

Czech participation in the LISA mission

Boson Stars that mimic Black Holes

Alexandre M. Pombo

• With all the new EHT and GAIA like evidences, one question arises:

• With all the new EHT and GAIA like evidences, one question arises: are all the dark compact objects Black holes?

• With all the new EHT and GAIA like evidences, one question arises: are all the dark compact objects Black holes?

A black hole observation can be either:

Direct:

Indirect:

• With all the new EHT and GAIA like evidences, one question arises: are all the dark compact objects Black holes?

A black hole observation can be either:

Direct: Image

Indirect:

- The shadow is associated with the LR and illumination source
- LRs are a generic feature of BHs
- They have an important impact on the ringdown and shadow

• With all the new EHT and GAIA like evidences, one question arises: are all the dark compact objects Black holes?

A black hole observation can be either:

Direct: Image

- The shadow is associated with the LR and illumination source
- LRs are a generic feature of BHs
- They have an important impact on the ringdown and shadow

Indirect: Kinematics

- The kinematics of stars around the central object
- This can give indications of it's nature and properties

• With all the new EHT and GAIA like evidences, one question arises: are all the dark compact objects Black holes?

A black hole observation can be either:

Direct: Image

- The shadow is associated with the LR and illumination source
- LRs are a generic feature of BHs
- They have an important impact on the ringdown and shadow

Indirect: Kinematics

- The kinematics of stars around the central object
- This can give indications of it's nature and properties

Can a dymically robust, horizonless object mimic a BH?

- A Boson Star is an hypothetical astronomical object made out of bosons
- For this stars to exist, one needs a stable boson
- Compact BSs are usually contain a massive complex scalar fields with U(1) global symmetry
- They are everywhere regular lumps of scalar or vector boson

- A Boson Star is an hypothetical astronomical object made out of bosons
- For this stars to exist, one needs a stable boson
- Compact BSs are usually contain a massive complex scalar fields with U(1) global symmetry
- They are everywhere regular lumps of scalar or vector boson

- A Boson Star is an hypothetical astronomical object made out of bosons
- For this stars to exist, one needs a stable boson
- Compact BSs are usually contain a massive complex scalar fields with U(1) global symmetry
- They are everywhere regular lumps of scalar or vector boson

- A Boson Star is an hypothetical astronomical object made out of bosons
- For this stars to exist, one needs a stable boson
- Compact BSs are usually contain a massive complex scalar fields with U(1) global symmetry
- They are everywhere regular lumps of scalar or vector boson

- A Boson Star is an hypothetical astronomical object made out of bosons
- For this stars to exist, one needs a stable boson
- Compact BSs are usually contain a massive complex scalar fields with U(1) global symmetry
- They are everywhere regular lumps of scalar or vector boson

- Boson Stars have been shown to be able to form dynamically
- And have been proposed as candidate dark matter objects
- They would interact very weakly with electromagnetic radiation
- The gravity of a compact BS can bend light and create an accretion disk

- Boson Stars have been shown to be able to form dynamically
- And have been proposed as candidate dark matter objects
- They would interact very weakly with electromagnetic radiation
- The gravity of a compact BS can bend light and create an accretion disk

- Boson Stars have been shown to be able to form dynamically
- And have been proposed as candidate dark matter objects
- They would interact very weakly with electromagnetic radiation
- The gravity of a compact BS can bend light and create an accretion disk

The Model

• The Einstein-matter action, with a spin-s = 0, 1 classical field

$${\cal S} = \int d^4 x \sqrt{-g} \left[rac{R}{16 \pi G} + {\cal L}_s
ight] \; ,$$

• The Einstein-matter action, with a spin-s = 0, 1 classical field

$$\mathcal{S} = \int d^4 x \sqrt{-g} \left[rac{R}{16 \pi G} + \mathcal{L}_s
ight] \; ,$$

• The Einstein-matter action, with a spin-*s* = 0, 1 classical field

$$\mathcal{S} = \int d^4 x \sqrt{-g} \left[rac{R}{16 \pi G} + \mathcal{L}_s
ight] \; ,$$

For the scalar fields Φ : s = 0

$$\mathcal{L}_0 = -rac{1}{2}g^{lphaeta}ig(ar{\Phi}_{,lpha}\Phi_{,eta}+ar{\Phi}_{,eta}\Phi_{,lpha}ig)-U_i(|\Phi|^2) \ ,$$

• The Einstein-matter action, with a spin-s = 0, 1 classical field

$$\mathcal{S} = \int d^4 x \sqrt{-g} \left[rac{R}{16 \pi G} + \mathcal{L}_s
ight] \; ,$$

For the scalar fields Φ : s = 0

$$\mathcal{L}_0 = -rac{1}{2}g^{lphaeta}ig(ar{\Phi}_{,lpha}\Phi_{,eta}+ar{\Phi}_{,eta}\Phi_{,lpha}ig)-U_i(|\Phi|^2) \ ,$$

For the vector fields A: s = 1

$${\cal L}_1 = - rac{1}{4} F_{lphaeta} ar{F}^{lphaeta} - V({f A}^{\,2})$$

• The Einstein-matter action, with a spin-*s* = 0, 1 classical field

$${\cal S} = \int d^4 x \sqrt{-g} \left[rac{R}{16 \pi G} + {\cal L}_s
ight] \; ,$$

For the scalar fields Φ : s = 0

$$\mathcal{L}_0 = -rac{1}{2}g^{lphaeta}ig(ar{\Phi}_{,lpha}\Phi_{,eta}+ar{\Phi}_{,eta}\Phi_{,lpha}ig)-U_i(ert \Phiert^2)\,,$$

For the vector fields A: s = 1

$${\cal L}_1 = - rac{1}{4} F_{lphaeta} ar{F}^{lphaeta} - V({f A}^{\,2})$$

• For the metric ansatz

$$ds^2=-N\sigma^2 dt^2+rac{dr^2}{N}+r^2 d\Omega_2^2 \hspace{1cm} N(r)=1-rac{2m(r)}{r}$$

• For the metric ansatz

$$ds^2=-N\sigma^2 dt^2+rac{dr^2}{N}+r^2 d\Omega_2^2 \hspace{1cm} N(r)=1-rac{2m(r)}{r}$$

For the scalar fields Φ : s = 0

• For the metric ansatz

$$ds^2=-N\sigma^2 dt^2+rac{dr^2}{N}+r^2 d\Omega_2^2 \hspace{1cm} N(r)=1-rac{2m(r)}{r}$$

For the scalar fields Φ : s = 0

$$\Phi(r,t)=arphi(r)e^{-i\omega t}$$

• For the metric ansatz

$$ds^2=-N\sigma^2 dt^2+rac{dr^2}{N}+r^2 d\Omega_2^2 \hspace{1cm} N(r)=1-rac{2m(r)}{r}$$

For the scalar fields Φ : s = 0

$$\Phi(r,t)=arphi(r)e^{-i\omega t}$$

For the vector fields A: s = 1

• For the metric ansatz

$$ds^2=-N\sigma^2 dt^2+rac{dr^2}{N}+r^2 d\Omega_2^2 \hspace{1cm} N(r)=1-rac{2m(r)}{r}$$

For the scalar fields Φ : s = 0

$$\Phi(r,t)=arphi(r)e^{-i\omega t}$$

For the vector fields A : s = 1

$$A = ig[f(r)dt + i\,g(r)drig]e^{-i\omega t}$$

• For the metric ansatz

$$ds^2=-N\sigma^2 dt^2+rac{dr^2}{N}+r^2 d\Omega_2^2 \hspace{1cm} N(r)=1-rac{2m(r)}{r}$$

For the scalar fields Φ : s = 0

$$\Phi(r,t)=arphi(r)e^{-i\omega t}$$

For the vector fields A : s = 1

$$A = ig[f(r)dt + i\,g(r)drig]e^{-i\omega t}$$

• For the metric ansatz

$$ds^2=-N\sigma^2 dt^2+rac{dr^2}{N}+r^2 d\Omega_2^2 \hspace{1cm} N(r)=1-rac{2m(r)}{r}$$

For the scalar fields Φ : s = 0

$$\Phi(r,t)=arphi(r)e^{-i\omega t}$$

For the vector fields *A* : *s* = 1

$$A = ig[f(r)dt + i\,g(r)drig]e^{-i\omega t}$$

$$U_{
m poly}=\mu_S^2\Phi^2$$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4$$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4+\gamma\Phi^6$$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4+\gamma\Phi^6$$

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \, igg]$$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4+\gamma\Phi^6$$

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \,\, igg]$$

$$V=rac{\mu_P^2}{2} \mathbf{A}^{\,2}+rac{\lambda_P}{4} \mathbf{A}^{\,4}$$

Numerics

- We developed a numerical solver to tackle the systems of ODEs
- It is written in C where:
 - The integrator is an explicit 6(5)th Runge-Kutta method
 - The boundary conditions are implemented through a secant/bisection algorithm

- We developed a numerical solver to tackle the systems of ODEs
- It is written in C where:
 - The integrator is an explicit 6(5)th Runge-Kutta method
 - The boundary conditions are implemented through a secant/bisection algorithm

- We developed a numerical solver to tackle the systems of ODEs
- It is written in C where:
 - The integrator is an explicit 6(5)th Runge-Kutta method
 - The boundary conditions are implemented through a secant/bisection algorithm

- We developed a numerical solver to tackle the systems of ODEs
- It is written in C where:
 - The integrator is an explicit 6(5)th Runge-Kutta method
 - The boundary conditions are implemented through a secant/bisection algorithm

- We developed a numerical solver to tackle the systems of ODEs
- It is written in C where:
 - The integrator is an explicit 6(5)th Runge-Kutta method
 - The boundary conditions are implemented through a secant/bisection algorithm

- If the source of light in the vicinity of the BS has the same morphology as it would have around a BH, the observational image could be similar
- A key feature is the cut-off in the emission due to the disk's inner edge
- Determined by the innermost stable circular orbit (ISCO) of the BH
- However, for spherical BSs there is no ISCO

- If the source of light in the vicinity of the BS has the same morphology as it would have around a BH, the observational image could be similar
- A key feature is the cut-off in the emission due to the disk's inner edge
- Determined by the innermost stable circular orbit (ISCO) of the BH
- However, for spherical BSs there is no ISCO

- If the source of light in the vicinity of the BS has the same morphology as it would have around a BH, the observational image could be similar
- A key feature is the cut-off in the emission due to the disk's inner edge
- Determined by the innermost stable circular orbit (ISCO) of the BH
- However, for spherical BSs there is no ISCO

- If the source of light in the vicinity of the BS has the same morphology as it would have around a BH, the observational image could be similar
- A key feature is the cut-off in the emission due to the disk's inner edge
- Determined by the innermost stable circular orbit (ISCO) of the BH
- However, for spherical BSs there is no ISCO

- If the source of light in the vicinity of the BS has the same morphology as it would have around a BH, the observational image could be similar
- A key feature is the cut-off in the emission due to the disk's inner edge
- Determined by the innermost stable circular orbit (ISCO) of the BH
- However, for spherical BSs there is no ISCO

- Recent developments in general relativistic magnetohydrodynamic simulations
- Show that the angular velocity of the orbits, $\Omega,$ attains a maximum at some areal radius R_Ω
- Suggesting that R_o determines the inner edge of the accretion disk

- Recent developments in general relativistic magnetohydrodynamic simulations
- Show that the angular velocity of the orbits, $\Omega,$ attains a maximum at some areal radius R $_{\Omega}^{\rm Olivares\ et\ al.\ ,\ MN\ of\ the\ RAS\ 2020}$
- Suggesting that R_o determines the inner edge of the accretion disk

- Recent developments in general relativistic magnetohydrodynamic simulations
- Show that the angular velocity of the orbits, $\Omega,$ attains a maximum at some areal radius R_{\Omega}^{Olivares et al. , MN of the RAS 2020
- Suggesting that R_o determines the inner edge of the accretion disk

- Recent developments in general relativistic magnetohydrodynamic simulations
- Show that the angular velocity of the orbits, $\Omega,$ attains a maximum at some areal radius ${\rm R}_\Omega$
- Suggesting that R_o determines the inner edge of the accretion disk
- BSs are then possible BH mimickers

- Recent developments in general relativistic magnetohydrodynamic simulations
- Show that the angular velocity of the orbits, $\Omega,$ attains a maximum at some areal radius ${\rm R}_\Omega$
- Suggesting that R_o determines the inner edge of the accretion disk
- BSs are then possible BH mimickers

- Recent developments in general relativistic magnetohydrodynamic simulations
- Show that the angular velocity of the orbits, $\Omega,$ attains a maximum at some areal radius R_Ω
- Suggesting that R_o determines the inner edge of the accretion disk
- BSs are then possible BH mimickers

• The objective of this work is to assess if **stable and dynamically robust** BS can yield the same shadow as a BH.

Light Rings and Timelike Circular Orbits

• The radial geodesic equation for a particle around a BS,

$$\dot{r}^2=rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN\,,$$

• The radial geodesic equation for a particle around a BS,

$$\dot{r}^2=rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN\,,$$

where *E* and *l* represent the particle's energy and angular momentum

• The radial geodesic equation for a particle around a BS,

$$\dot{r}^2=rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN\,,$$

where *E* and *l* represent the particle's energy and angular momentum

• For null (timelike) geodesics k = 0 (k = -1)

• The radial geodesic equation for a particle around a BS,

$$\dot{r}^2=rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN\,,$$

where E and l represent the particle's energy and angular momentum

- For null (timelike) geodesics k = 0 (k = -1)
- For a circular orbit, $\dot{r} = 0 = \ddot{r}$

$$-r\sigma\left(rac{-2m'}{r}+rac{2m}{r^2}
ight)+2\left(1-rac{2m}{r}
ight)\left(\sigma-r\sigma'
ight)=0\ .$$

$$-r\sigma\left(rac{-2m'}{r}+rac{2m}{r^2}
ight)+2\left(1-rac{2m}{r}
ight)\left(\sigma-r\sigma'
ight)=0~.$$

- LRs always come in pairs: one stable and one unstable ^{Cunha & Herdeiro, PRL 2020}
- We wish to find the first BS solution containing a LR
- In other words, the first ultracompact BS

$$-r\sigma\left(rac{-2m'}{r}+rac{2m}{r^2}
ight)+2\left(1-rac{2m}{r}
ight)\left(\sigma-r\sigma'
ight)=0~.$$

- LRs always come in pairs: one stable and one unstable ^{Cunha & Herdeiro, PRL 2020}
- We wish to find the first BS solution containing a LR
- In other words, the first ultracompact BS

$$-r\sigma\left(rac{-2m'}{r}+rac{2m}{r^2}
ight)+2\left(1-rac{2m}{r}
ight)\left(\sigma-r\sigma'
ight)=0~.$$

- LRs always come in pairs: one stable and one unstable ^{Cunha & Herdeiro, PRL 2020}
- We wish to find the first BS solution containing a LR
- In other words, the first ultracompact BS

- Let us now consider timelike geodesics (k = -1)
- The angular velocity Ω along these orbits is

• As already mentioned, BS do not have an ISCO

- Let us now consider timelike geodesics (k = -1)
- The angular velocity Ω along these orbits is

$$\Omega = \sqrt{rac{\sigma}{2r}} \sqrt{\sigma N' + 2N\sigma'} \ .$$

• As already mentioned, BS do not have an ISCO

- Let us now consider timelike geodesics (k = -1)
- The angular velocity Ω along these orbits is

$$\Omega = \sqrt{rac{\sigma}{2r}} \sqrt{\sigma N' + 2N\sigma'} \ .$$

• As already mentioned, BS do not have an ISCO

- However an accretion disk may have an inner edge even around BSs without an ISCO Olivares et al., MN of the RAS 2020
- This occurs if the angular velocity along TCOs attains a maximum at some radial distance. The corresponding areal radius is denoted R_o

- However an accretion disk may have an inner edge even around BSs without an ISCO Olivares et al., MN of the RAS 2020
- This occurs if the angular velocity along TCOs attains a maximum at some radial distance. The corresponding areal radius is denoted R_o

- However an accretion disk may have an inner edge even around BSs without an ISCO Olivares et al., MN of the RAS 2020
- This occurs if the angular velocity along TCOs attains a maximum at some radial distance. The corresponding areal radius is denoted R_o

$$\xi \equiv rac{R_{ISCO}}{R_\Omega}$$
 .

- Moving along the spiral, the ADM mass and frequency undergo oscillations
- The field amplitude at the origin, on the other hand, grows monotonically
- To uniquely label the solutions, let us introduce

$$m{\xi}\equivrac{R_{ISCO}}{R_{\Omega}}$$
 .

- Moving along the spiral, the ADM mass and frequency undergo oscillations
- The field amplitude at the origin, on the other hand, grows monotonically
- To uniquely label the solutions, let us introduce

$$m{\xi}\equivrac{R_{ISCO}}{R_{\Omega}}$$
 .

- Moving along the spiral, the ADM mass and frequency undergo oscillations
- The field amplitude at the origin, on the other hand, grows monotonically
- To uniquely label the solutions, let us introduce

$$m{\xi}\equivrac{R_{ISCO}}{R_{\Omega}}$$
 .

- Moving along the spiral, the ADM mass and frequency undergo oscillations
- The field amplitude at the origin, on the other hand, grows monotonically
- To uniquely label the solutions, let us introduce

$$m{\xi}\equivrac{R_{ISCO}}{R_{\Omega}}$$
 .

- Moving along the spiral, the ADM mass and frequency undergo oscillations
- The field amplitude at the origin, on the other hand, grows monotonically
- To uniquely label the solutions, let us introduce

Geodesic motion: Keeping up

• Does it provide a similar scale, for a BS and a Schw. BH?

$$\xi \equiv rac{R_{ISCO}}{R_\Omega}$$
 .

- Moving along the spiral, the ADM mass and frequency undergo oscillations
- The field amplitude at the origin, on the other hand, grows monotonically
- To uniquely label the solutions, let us introduce

$$\chi(x)\equiv rac{arphi_0(x)}{arphi_0(M_{ ext{max}})} \hspace{0.2cm} [ext{scalar}] \hspace{0.2cm} ext{or} \hspace{0.2cm} \chi(x)\equiv rac{f_0(x)}{f_0(M_{ ext{max}})} \hspace{0.2cm} [ext{vector}] \hspace{0.2cm},$$

Numerical Results

$$U_{
m poly}=\mu_S^2\Phi^2$$

Solutions are stable up to the first maximum of the mass

$$U_{
m poly}=\mu_S^2\Phi^2$$

Solutions are stable up to the first maximum of the mass

There is no stable ultracompact Boson Star solution

$$U_{
m poly}=\mu_S^2\Phi^2$$

$$U_{
m poly}=\mu_S^2\Phi^2$$

$$U_{
m poly}=\mu_S^2\Phi^2$$

$$U_{
m poly}=\mu_S^2\Phi^2$$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4$$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4$$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4+\gamma\Phi^6$$

$$U_{
m poly} = \mu_S^2 \Phi^2 + \lambda \Phi^4 + \gamma \Phi^6$$

- This analysis and the one in the previous subsection, suggest that a simultaneous increase
- To test this hypothesis: $\lambda = 100$ and $\gamma = 1000$
- $\chi(\xi_{trans}) = 1.51$
- However R_{Ω} is still fairly below the ISCO radius of the comparable BH:
- $\xi_{min} = 5.09$

$$U_{
m poly} = \mu_S^2 \Phi^2 + \lambda \Phi^4 + \gamma \Phi^6$$

- This analysis and the one in the previous subsection, suggest that a simultaneous increase
- To test this hypothesis: $\lambda = 100$ and $\gamma = 1000$
- $\chi(\xi_{trans}) = 1.51$
- However R_{Ω} is still fairly below the ISCO radius of the comparable BH:
- $\xi_{min} = 5.09$

$$U_{
m poly} = \mu_S^2 \Phi^2 + \lambda \Phi^4 + \gamma \Phi^6$$

- This analysis and the one in the previous subsection, suggest that a simultaneous increase
- To test this hypothesis: $\lambda = 100$ and $\gamma = 1000$
- $\chi(\xi_{trans}) = 1.51$
- However R_{Ω} is still fairly below the ISCO radius of the comparable BH:
- $\xi_{min} = 5.09$

$$U_{
m poly} = \mu_S^2 \Phi^2 + \lambda \Phi^4 + \gamma \Phi^6$$

- This analysis and the one in the previous subsection, suggest that a simultaneous increase
- To test this hypothesis: $\lambda = 100$ and $\gamma = 1000$
- $\chi(\xi_{trans}) = 1.51$
- However R_{Ω} is still fairly below the ISCO radius of the comparable BH:
- $\xi_{min} = 5.09$

$$U_{
m poly}=\mu_S^2\Phi^2+\lambda\Phi^4+\gamma\Phi^6$$

- This analysis and the one in the previous subsection, suggest that a simultaneous increase
- To test this hypothesis: $\lambda = 100$ and $\gamma = 1000$
- $\chi(\xi_{trans}) = 1.51$
- However R_{Ω} is still fairly below the ISCO radius of the comparable BH:
- $\xi_{min} = 5.09$

$$U_{
m poly} = \mu_S^2 \Phi^2 + \lambda \Phi^4 + \gamma \Phi^6$$

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \, igg]$$

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \, igg]$$

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \,\, igg]$$

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \, igg]$$

Boson Stars: Stability

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \, igg]$$

Boson Stars: Stability

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \, igg]$$

Boson Stars: Stability

$$U_{
m axion} = rac{2\mu_S^2 f_lpha^2}{\hbar B} igg[1 - \sqrt{1 - 4B \sin^2 igg(rac{\Phi \sqrt{\hbar}}{2 f_lpha} igg)} \, igg]$$

$$V=rac{\mu_P^2}{2}$$
A 2

$$V=rac{\mu_P^2}{2}\mathbf{A}^2+rac{\lambda_P}{4}\mathbf{A}^2$$

$$V=rac{\mu_P^2}{2} \mathbf{A}^2+rac{\lambda_P}{4} \mathbf{A}^4$$

$$V=rac{\mu_P^2}{2} \mathbf{A}^2+rac{\lambda_P}{4} \mathbf{A}^4$$

Shadow

BH

BH

PS

BH

PS

BH

BH

PS

BH

- Models with dynamically robust spherical BSs, <u>can</u> mimic the shadow of a Schwarzschild BH
- In the case of spherically stable scalar BSs:
- While polynomial self-interaction cannot easily solve this issue;
- The Axionic model may be able

- On the other hand, for spherical PSs
- We found that the simplest model, can indeed mimic a Schwarzschild BH

- Models with dynamically robust spherical BSs, can mimic the shadow of a Schwarzschild BH
- In the case of spherically stable scalar BSs:
- While polynomial self-interaction cannot easily solve this issue;
- The Axionic model may be able

- On the other hand, for spherical PSs
- We found that the simplest model, can indeed mimic a Schwarzschild BH

- Models with dynamically robust spherical BSs, can mimic the shadow of a Schwarzschild BH
- In the case of spherically stable scalar BSs:
- While polynomial self-interaction <u>cannot</u> easily solve this issue;
- The Axionic model may be able

- On the other hand, for spherical PSs
- We found that the simplest model, can indeed mimic a Schwarzschild BH

- Models with dynamically robust spherical BSs, can mimic the shadow of a Schwarzschild BH
- In the case of spherically stable scalar BSs:
- While polynomial self-interaction cannot easily solve this issue;
- The Axionic model <u>may be able</u>

- On the other hand, for spherical PSs
- We found that the simplest model, can indeed mimic a Schwarzschild BH

- Models with dynamically robust spherical BSs, can mimic the shadow of a Schwarzschild BH
- In the case of spherically stable scalar BSs:
- While polynomial self-interaction cannot easily solve this issue;
- The Axionic model may be able

- On the other hand, for spherical PSs
- We found that the simplest model, can indeed mimic a Schwarzschild BH

- Models with dynamically robust spherical BSs, can mimic the shadow of a Schwarzschild BH
- In the case of spherically stable scalar BSs:
- While polynomial self-interaction cannot easily solve this issue;
- The Axionic model may be able

- On the other hand, for spherical PSs
- We found that the simplest model, <u>can</u> indeed mimic a Schwarzschild BH

- Despite the matching between R_0 and the ISCO of the BH
- The lensing analysis reveals slightly different shadows
- Since R_o varies from a large value down to zero
- A precise shadow degeneracy will be achieved
- Our lensing analysis reveals the degeneracy only holds in certain conditions

- Despite the matching between R_0 and the ISCO of the BH
- The lensing analysis reveals slightly different shadows
- Since R_o varies from a large value down to zero
- A precise shadow degeneracy will be achieved
- Our lensing analysis reveals the degeneracy only holds in certain conditions

- Despite the matching between R_0 and the ISCO of the BH
- The lensing analysis reveals slightly different shadows
- Since R_o varies from a large value down to zero
- A precise shadow degeneracy will be achieved
- Our lensing analysis reveals the degeneracy only holds in certain conditions

- Despite the matching between R_0 and the ISCO of the BH
- The lensing analysis reveals slightly different shadows
- Since R_o varies from a large value down to zero
- A precise shadow degeneracy will be achieved
- Our lensing analysis reveals the degeneracy only holds in certain conditions

- Despite the matching between R_0 and the ISCO of the BH
- The lensing analysis reveals slightly different shadows
- Since R_o varies from a large value down to zero
- A precise shadow degeneracy will be achieved
- Our lensing analysis reveals the degeneracy only holds in certain conditions

Kinematics

- In the absence of an illumination, direct observations are impossible
- However, the gravitational potential still exist allowing the orbiting luminous objects
- The dark object nature can be inferred by the orbit of the luminous
- A distinguishable characteristic of a BS is a spatial matter distribution

- In the absence of an illumination, direct observations are impossible
- However, the gravitational potential still exist allowing the orbiting luminous objects
- The dark object nature can be inferred by the orbit of the luminous
- A distinguishable characteristic of a BS is a spatial matter distribution

- In the absence of an illumination, direct observations are impossible
- However, the gravitational potential still exist allowing the orbiting luminous objects
- The dark object nature can be inferred by the orbit of the luminous
- A distinguishable characteristic of a BS is a spatial matter distribution

- In the absence of an illumination, direct observations are impossible
- However, the gravitational potential still exist allowing the orbiting luminous objects
- The dark object nature can be inferred by the orbit of the luminous
- A distinguishable characteristic of a BS is a spatial matter distribution

- In the absence of an illumination, direct observations are impossible
- However, the gravitational potential still exist allowing the orbiting luminous objects
- The dark object nature can be inferred by the orbit of the luminous
- A distinguishable characteristic of a BS is a spatial matter distribution

• Can a luminous star probe the nature of the central dark object?

Dark Object

Mass range Formation Stability
System

Mass range Formation Stability

Observation: GAIA

Orbits

- Let us now consider timelike geodesics (k = -1)
- Before we wanted the last circular stable orbits
- Now we want an eliptic orbit
- The geodesic condition is

- Let us now consider timelike geodesics (k = -1)
- Before we wanted the last circular stable orbits
- Now we want an eliptic orbit
- The geodesic condition is

- Let us now consider timelike geodesics (k = -1)
- Before we wanted the last circular stable orbits
- Now we want an eliptic orbit
- The geodesic condition is

- Let us now consider timelike geodesics (k = -1)
- Before we wanted the last circular stable orbits
- Now we want an eliptic orbit
- The geodesic condition is

$$\dot{r}^2=rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN\,,$$

- Let us now consider timelike geodesics (k = -1)
- Before we wanted the last circular stable orbits
- Now we want an eliptic orbit
- The geodesic condition is

$$\dot{r}^2= rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN \ ,$$

- Let us now consider timelike geodesics (k = -1)
- Before we wanted the last circular stable orbits
- Now we want an eliptic orbit
- The geodesic condition is

$$\dot{r}^2=rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN\ ,$$

- Let us now consider timelike geodesics (k = -1)
- Before we wanted the last circular stable orbits
- Now we want an eliptic orbit
- The geodesic condition is

$$\dot{r}^2=rac{E^2}{\sigma^2}-rac{l^2N}{r^2}+kN\ ,$$

Observation: GAIA

Observation: GAIA

- This imposes the energy and angular momentum of the orbit
- To simplify, let us consider the ratio

- This imposes the energy and angular momentum of the orbit
- To simplify, let us consider the ratio

$$rac{r_a}{r_p}=rac{1+e}{1-e}=m{\xi}$$

- This imposes the energy and angular momentum of the orbit
- To simplify, let us consider the ratio

$$rac{r_a}{r_p}=rac{1+e}{1-e}=m{\xi}$$

The energy and angular momentum are then

- This imposes the energy and angular momentum of the orbit
- To simplify, let us consider the ratio

$$rac{r_a}{r_p}=rac{1+e}{1-e}=m{\xi}$$

The energy and angular momentum are then

$$E^2 = -k \, rac{(\xi+1) \, \sigma^3 \, (c^2 \, r_a - 2 \, G \, m) \, (c^2 \, r_a - 2 \, G \, \xi \, m)}{r_a \Big[c^2 (\xi+1) \, r_a - 2 \, G (\xi^2 + \xi + 1) m \Big]} \,\,\,\,\,\, l^2 \, = - \, rac{2 \, c^2 \, G \, m \, r_a^2}{c^2 \, r_a (\xi+1) - 2 \, G \, m \, (1\!+\!\xi\!+\!\xi^2)}$$

- This imposes the energy and angular momentum of the orbit
- To simplify, let us consider the ratio

$$rac{r_a}{r_p}=rac{1+e}{1-e}=m{\xi}$$

The energy and angular momentum are then

$$E^2 = -k \, rac{(\xi+1) \, \sigma^3 \, (c^2 \, r_a - 2 \, G \, m) \, (c^2 \, r_a - 2 \, G \, \xi \, m)}{r_a \Big[c^2 (\xi+1) \, r_a - 2 \, G (\xi^2 + \xi + 1) m \Big]} \,\,\,\,\,\, l^2 = - \, rac{2 \, c^2 \, G \, m \, r_a^2}{c^2 \, r_a (\xi+1) - 2 \, G \, m \, (1\!+\!\xi\!+\!\xi^2)}$$

 $c = 63241~{
m AU} \cdot {
m yr}^{-1}~,~{
m G} = 39.748~{
m AU}^3 \cdot {
m M}_\odot \cdot {
m yr}^{-2}~,~{
m M}_{
m Pl} = 1.094 imes 10^{-38}~{
m M}_\odot$

Scalar

•

Scalar Vector • ٠

Boson star characteristics - Case I							
Model	Potential	$\begin{array}{ccc} \text{Boson} & \text{mass} \\ (\mu) & \text{at} & M_{\text{Max}} \\ [\text{GeV/c}^2] \end{array}$	Radius R_* at M_{Max} [km]	Interaction coupling (λ)			
Scalar, non-interacting	$U_{\rm self} = \frac{\mu_S^2}{2}\phi^2$	10^{-20}	134	$\lambda = 0$			
Scalar, self-interacting Scalar, axion-like	$U_{\text{self}} = \frac{\mu_S^2}{2}\phi^2 + \lambda\phi^4$ $U_{\text{axion}} (\text{see} (\textbf{9}))$	$\frac{10^{-20}}{10^{-19}}$	87 317	$\lambda = 100$ $f_{\alpha} = 0.02$			
Vector	$V = \frac{\mu_P^2}{2} \mathbf{A}^2$	10^{-20}	124	0			

Boson star characteristics - Case I							
Model	Potential	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Radius R_* at $M_{\rm Max}$ [km]	Interaction coupling			
		$[GeV/c^2]$		(λ)			
Scalar, non-interacting	$U_{ m self} = \frac{\mu_S^2}{2} \phi^2$	10^{-20}	134	$\lambda = 0$			
Scalar, self-interacting	$U_{\text{self}} = \frac{\mu_S^2}{2}\phi^2 + \lambda\phi^4$	10^{-20}	87	$\lambda = 100$			
Scalar, axion-like	U_{axion} (see (9))	10^{-19}	317	$f_{\alpha} = 0.02$			
Vector	$V = \frac{\mu_P^2}{2} \mathbf{A}^2$	10^{-20}	124	0			

Boson star characteristics - Case I							
Model	Potential	Boson mass	Radius R_* at	Interaction			
		(μ) at M_{Max}	$M_{\rm Max}$ [km]	coupling			
		$[{ m GeV/c^2}]$		(λ)			
Scalar, non-interacting	$U_{ m self} = \frac{\mu_S^2}{2} \phi^2$	10^{-20}	134	$\lambda = 0$			
Scalar, self-interacting	$U_{\text{self}} = \frac{\mu_S^2}{2}\phi^2 + \lambda\phi^4$	10^{-20}	87	$\lambda = 100$			
Scalar, axion-like	U_{axion} (see (9))	10^{-19}	317	$f_{\alpha} = 0.02$			
Vector	$V = \frac{\mu_P^2}{2} \mathbf{A}^2$	10^{-20}	124	0			

Class II: Scalar

Class II: Scalar

ſ

d s = d d d π

e de la complete de la de la complete de

Class II: Vector

Class II: Vector

- Models with dynamically robust spherical BSs, can reproduce the observations made by GAIA
- The largest boson star radii occurs in the stable region
- In this part, the mass is the leading term

- Axionic stars may have the orbiting star inside the matter distribution
- In this case, orbits become highly eccentric and pressessing
- Hence, being ruled out by current observations

- Models with dynamically robust spherical BSs, can reproduce the observations made by GAIA
- The largest boson star radii occurs in the stable region
- In this part, the mass is the leading term

- Axionic stars may have the orbiting star inside the matter distribution
- In this case, orbits become highly eccentric and pressessing
- Hence, being ruled out by current observations

- Models with dynamically robust spherical BSs, can reproduce the observations made by GAIA
- The largest boson star radii occurs in the stable region
- In this part, the mass is the leading term

- Axionic stars may have the orbiting star inside the matter distribution
- In this case, orbits become highly eccentric and pressessing
- Hence, being ruled out by current observations

- Models with dynamically robust spherical BSs, can reproduce the observations made by GAIA
- The largest boson star radii occurs in the stable region
- In this part, the mass is the leading term

• Axionic stars may have the orbiting star inside the matter distribution

- In this case, orbits become highly eccentric and pressessing
- Hence, being ruled out by current observations

- Models with dynamically robust spherical BSs, can reproduce the observations made by GAIA
- The largest boson star radii occurs in the stable region
- In this part, the mass is the leading term

- Axionic stars may have the orbiting star inside the matter distribution
- In this case, orbits become highly eccentric and pressessing
- Hence, being ruled out by current observations

- Models with dynamically robust spherical BSs, can reproduce the observations made by GAIA
- The largest boson star radii occurs in the stable region
- In this part, the mass is the leading term

- Axionic stars may have the orbiting star inside the matter distribution
- In this case, orbits become highly eccentric and pressessing
- Hence, being ruled out by current observations

• Can a dynamically robust, horizonless object mimic a BH?

• Can a dynamically robust, horizonless object mimic a BH?

• Can a dynamically robust, horizonless object mimic a BH?

Image

Yes

• Can a dynamically robust, horizonless object mimic a BH?

Image Yes

But only under certain observational conditions

• Can a dynamically robust, horizonless object mimic a BH?

Image Yes

But only under certain observational conditions

• Can a dynamically robust, horizonless object mimic a BH?

Image Yes

But only under certain observational conditions

Kinematics

Yes

•

• Can a dynamically robust, horizonless object mimic a BH?

Image Yes

But only under certain observational conditions

Kinematics

Yes

•

1

• Can a dynamically robust, horizonless object mimic a BH?

Image Yes

But only under certain observational conditions

Yes

ľ

Kinematics

A Boson star can mimic a BH's phenomonology

Thank You! Děkuji!

czechLISA

Czech participation in the LISA mission

Boson Stars that mimic Black Holes

doi.org/10.1088/1475-7516/2021/04/051

arXiv:2304.09140

pombo@fzu.cz

