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● Recent developments in general relativistic magnetohydrodynamic 
simulations

● Show that the angular velocity of the orbits, Ω, attains a maximum at 
some areal radius RΩ

● Suggesting that RΩ determines the inner edge of the accretion disk

● BSs are then possible BH mimickers

● The objective of this work is to assess if stable and dynamically robust 
BS can yield the same shadow as a BH.

Black Hole mimicker 
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● Does it provide a similar scale, for a BS and a Schw. BH?

● Moving along the spiral, the ADM mass and frequency undergo 
oscillations

● The field amplitude at the origin, on the other hand, grows 
monotonically 

● To uniquely label the solutions, let us introduce
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● Models with dynamically robust spherical BSs, can mimic the shadow of 
a Schwarzschild BH

● In the case of spherically stable scalar BSs:

● While polynomial self-interaction cannot easily solve this issue;

● The Axionic model may be able

● On the other hand, for spherical PSs

● We found that the simplest model, can indeed mimic a Schwarzschild 
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Black Hole mimicker 
● In the absence of an illumination, direct observations are impossible

● However, the gravitational potential still exist allowing the orbiting 
luminous objects 

● The dark object nature can be inferred by the orbit of the luminous 

● A distinguishable characteristic of a BS is a spatial matter distribution

● Can a luminous star probe the nature of the central dark object?
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● Models with dynamically robust spherical BSs, can reproduce the 
observations made by GAIA 

● The largest boson star radii occurs in the stable region

● In this part, the mass is the leading term

● Axionic stars may have the orbiting star inside the matter distribution

● In this case, orbits become highly eccentric and pressessing

● Hence, being ruled out by current observations
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A Boson star can mimic a BH’s phenomonology
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Thank You!

Děkuji!



Boson Stars that mimic 
Black Holes
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