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e They have an important impact on nature and properties

the ringdown and shadow

Can a dymically robust, horizonless object mimic a BH?
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e The Einstein-matter action, with a spin-s=20, 1 classical field
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Black Hole mimicker

e Recent developments in general relativistic magnetohydrodynamic
simulations

e Show that the angular velocity of the orbits, ), attains a maximum at
some areal radius R,

e Suggesting that R, determines the inner edge of the accretion disk

e BSs are then possible BH mimickers

e The objective of this work is to assess if stable and dynamically robust
BS can yield the same shadow as a BH.
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e The radial geodesic equation for a particle around a BS,

2 2
i % — lr—2N + kN,
where E and [ represent the particle’s energy and angular momentum

e For null (timelike) geodesics k=0 (k=—1)

e Foracircularorbit,7=0=7r
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Geodesic motion: Light Rings k=0

e Let us first consider null geodesics (k = 0)

_m(—fzn’ +3_gn)+z( —2m) (g —ro’) =0.

e LRs always come in pairs: one stable and one unstable ¢ & Herdeiro, PRL

2020

e We wish to find the first BS solution containing a LR

e In other words, the first ultracompact BS
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e The angular velocity Q2 along these orbits is

Q=,/5vVoN +2No'.

e As already mentioned, BS do not have an ISCO
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Geodesic motion: Keeping up

e Does it provide a similar scale, for a BS and a Schw. BH?

_ Risco
£= %,

e Moving along the spiral, the ADM mass and frequency undergo
oscillations

e The field amplitude at the origin, on the other hand, grows
monotonically

e To uniquely label the solutions, let us introduce

_ (=) _ _fol=)
x(x) = m scalar] or x(z) = 7 (;Jm) [vector] ,
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Solutions are stable up to the first
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e To test this hypothesis: A=100 and y=1000
¢ X(ftrans) =1.51
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Summary

e Models with dynamically robust spherical BSs, can mimic the shadow of
a Schwarzschild BH

e In the case of spherically stable scalar BSs:
e While polynomial self-interaction cannot easily solve this issue;

e The Axionic model may be able

e On the other hand, for spherical PSs

e We found that the simplest model, can indeed mimic a Schwarzschild
BH
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Summary

o Despite the matching between R, and the ISCO of the BH
o The lensing analysis reveals slightly different shadows

e Since R, varies from a large value down to zero

e A precise shadow degeneracy will be achieved

e Our lensing analysis reveals the degeneracy only holds in certain
conditions
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Black Hole mimicker

e In the absence of an illumination, direct observations are impossible

o However, the gravitational potential still exist allowing the orbiting
luminous objects

e The dark object nature can be inferred by the orbit of the luminous

e A distinguishable characteristic of a BS is a spatial matter distribution

e Can a luminous star probe the nature of the central dark object?
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Geodesic motion: Timelike Circular Orbits k=-1

e This imposes the energy and angular momentum of the orbit

e To simplify, let us consider the ratio

Ta 1+e .
r,  1l—e =<

The energy and angular momentum are then

(£4+1) * (> r1a—2Gm) (> 1,—2 G € m) l2 e 2¢2Gm ’I”‘sz

E? = —k

o |C2(E+1) 7a—2 G(£2+£+1)m] A 1o (§+1)=2 G m (1+6+€7)

c=63241 AU -yr !, G =39.748AU° - My, - yr 2, Mp; = 1.094 x 10 % M,
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Boson star characteristics - Case 1

Model Potential Boson mass | Radius R, at | Interaction
(n) at  Mypax | Myax [km] coupling
[GeV/c?] (A)

Scalar, non-interacting || U = ’—%cf)Q 10-2° 134 A=0

Scalar, self-interacting Useir = H§¢2 B /\(,754 1020 87 A= 100

Scalar, axion-like Uaxion (see @)) 1019 317 fau =0.02

Vector V= #—;QAz 10-2° 124 0
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Boson star characteristics - Case 1

Model Potential Boson mass | Radius R, at ]| Interaction
() at Mypax | Myax [km] coupling
[GeV/c?] (A)

Scalar, non-interacting || U = %cjﬁ 10-2° 134 A=0

Scalar, self-interacting Useir = E§¢2 - )\¢4 1020 87 A= 100

Scalar, axion-like Uaxion (see @)) 1019 317 fau =0.02

Vector V= i22’3A2 10-20 124 0
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Summary

e Models with dynamically robust spherical BSs, can reproduce the
observations made by GAIA

e The largest boson star radii occurs in the stable region

e In this part, the mass is the leading term

e Axionic stars may have the orbiting star inside the matter distribution
e In this case, orbits become highly eccentric and pressessing

e Hence, being ruled out by current observations
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Conclusion

e Can adynamically robust, horizonless object mimic a BH?
Image V(=

But only under certain observational conditions

Kinematics Yes

A Boson star can mimic a BH’s phenomonology



Thank You!
D¢ékuji!
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