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OUTLINE

• Brief intro to the effective-one-body (EOB) approach 
to the two-body problem in general relativity

• Comparison between the EOB model TEOBResumS and 
gravitational self-force (GSF) results:
- quasi-circular equatorial motion, nonspinning black holes
- intermediate- and extreme-mass-ratio inspirals (IMRIs and EMRIs)

• Modifying TEOBResumS for IMRIs and EMRIs

• Discussing features to be added: spin, eccentricity, 
           environment & beyond GR
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THE EFFECTIVE-ONE-BODY FORMALISM
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Theoretical results 
from classical 
approaches

Information from 
Numerical Relativity

(NR)

EOB

flexible analytical approach,
mapping the two-body dynamics in the 

motion of a particle with the reduced mass 
of the system moving in an effective metric

(deformation of Schwarzschild/Kerr)    
 



THEORETICAL FRAMEWORK

• Hamiltonian: found by mapping the “energy levels” of the 
real problem at a given PN order to the effective ones

• Hamiltonian equations of motion complemented 
by the radiation reaction

• Waveform: (inspiral + plunge) + ringdown 
                decomposed on spin-weighted spherical harmonics
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conservative sector

dissipative sector dynamics



DYNAMICAL BACKGROUND

4

APN
orb(u) = 1 − 2u + 2νu3 + νa4u4 + ν [ac

5(ν) + alog
5 ln u] u5 + ν [ac

6(ν) + alog
6 ln u] u6

Continuous deformation in    of a Schwarzschild metric:ν

ĤEOB ≡ HEOB
μ

= 1
ν

1 + 2ν (Ĥeff − 1) Ĥeff = p2
r*

+ A(r, ν)(1 +
p2

ϕ

r2 + 2ν(4 − 3ν)p4
r*)

G = c = 1

ds2
eff = geff

μν dxμ
effdxν

eff = − A(r)dt2 + B(r)dR2 + R2(dθ2 + sin2 θdϕ2) u = 1/r

EOB Hamiltonian for nonspinning binaries:

ν ≡ μ
M

= m1m2
(m1 + m2)2q = m1

m2
, m1 > m2Mass ratio Symmetric mass ratio



dpφ

dt
= ℱ̂φ = ℱ̂∞

φ + ℱ̂H
φ

HAMILTONIAN EQUATIONS OF MOTION
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dpr*

dt
= − ( A

B )
1/2 ∂ĤEOB

∂r

Radiation reaction:

dr
dt

= ( A
B )

1/2 ∂ĤEOB
∂pr*

Orbital frequency
dφ
dt

= ∂ĤEOB
∂pφ

= Ω
solved numerically 
with ODE solver

horizon contributionasymptotic contribution +



INSPIRAL (+ PLUNGE) WAVEFORM

• Strain:

• Regge-Wheeler-Zerilli normalized waveform:
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Next-to-Quasi-Circular 
correctionshℓm = h(N,ϵ)

ℓm
̂Sϵ
eff ĥtail

ℓm(x) [ρℓm(x)]ℓ ĥNQC
ℓm

Resummed PN 
correction

Newtonian 
prefactor

waveform frequency

multipoles



TEOBRESUMS

• EOB model built for comparable-mass binaries 
(versions: quasi-circular, eccentric, precessing)

• Incorporates analytical information (PN expansions for 
potentials & waveform/flux, resummed in some way)

• Some parameters are tuned to NR results 
(orbital sector,  spin-orbit, merger & ringdown)
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BLACK HOLE BINARIES: HIGHER MASS RATIOS

• Intermediate and extreme mass ratio black hole binaries are 
among the sources of the next generation of 
gravitational wave detectors (ET, CE, LISA)

• Regime scarcely explored by NR

• Apart from EOB, gravitational self-force (GSF) theory is 
the only other available tool to probe the inspiral

•      comparing EOB and GSF
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SECOND ORDER GRAVITATIONAL SELF-FORCE

• GSF: taking into account the deviation from the test-mass case 
due to the second object’s gravitational field

• Expanding the metric to 2nd order in the small mass ratio:

• Two-timescale expansion: slow radiation reaction timescale 
         vs fast orbital timescale

• We consider here the post-adiabatic (PA) model presented in 
Wardell et al. 2021 (arXiv:2112.12265v2)
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https://arxiv.org/abs/2112.12265v2


WAVEFORM ALIGNMENT IN THE TIME DOMAIN

• We focus on the                  strain multipole

• Phasing: finding the time and phase shift by minimizing the 
root-mean-square of the phase difference on a certain interval
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warning: a bit 
arbitrary!



PHASE DIFFERENCES

Binaries with mass ratio 
q = 15, 32, 64, 128 to 

complement the findings 
of Nagar et al. 2022 

(arXiv:2202.05643v1)
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GAUGE-INVARIANT ANALYSIS: Q𝝎

• Adiabaticity parameter: 

• Q𝝎>> 1 adiabatic motion

• Phase difference:

• Expanding in the symmetric mass ratio:

12

fitting the coefficients 
for a set of mass ratios 

at fixed values of the frequency

0PA 1PA 2PA



THE COEFFICIENTS Q𝝎
0, Q𝝎

1, Q𝝎
2
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IMPROVING TEOBRESUMS

• The Q𝝎 analysis indicates that as the mass ratio increases, the 
dominant contributions are given by Q𝝎

0 and Q𝝎
1

• Q𝝎
0 : depends on the 1st order self-force (1SF) flux 

• Q𝝎
1 : depends the 1SF and 2SF fluxes and on the 

1SF contribution to the orbital potential
• Hence for higher mass ratios we have to improve TEOBResumS

both in the conservative and in the dissipative sector of the model

• ... and we will turn off all NR calibration
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GSF-INFORMED EOB POTENTIALS

EOB orbital potentials

Expressions for 𝑎!"# , �̅�!"# , 𝑞!"# at 8.5PN order
+ suitable factorization & Padé-resummation 

+ fit on the numerical GSF data of
Akcay & van de Meent, arXiv:1512.03392v2 

… but singularity at the light-ring!
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https://arxiv.org/abs/1512.03392v2


RADIATION REACTION (FLUX AT INFINITY)

• Flux multipoles are factorized into different contributions, 
among which the residual amplitude corrections:

• The standard TEOBResumS has Padé-resummed 6PN expressions

• We hybridize 22PN results (Fujita 2012) with the 
known 𝜈-dependence for every       multipole 
(e.g.                      ) up to ℓ = 8
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ρℓm = 1 + c1x + c2x2 + . . . x = Ω2/3

orbital 
frequency

ℓm

PN series

c1(ν), c2(ν), c3(ν)



THE COEFFICIENTS Q𝝎
0, Q𝝎

1, Q𝝎
2
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due to having the EOB 
potentials only up to 1SF 

order now (no higher-order-
in-𝜈 corrections)



TOWARDS EXTREME-MASS-RATIO INSPIRALS

Integrated 
phase differences: 

q = 500   ∆𝜙 ~ 0.07

q = 5000   ∆𝜙 ~ 0.27

q = 50 000 ∆𝜙 ~ 5.88  
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THE HORIZON FLUX CONTRIBUTION

• To increase the 
agreement in Q𝝎

0 :  
improving the horizon flux

• Integrated 
phase differences: 

Standard: ∆𝜙 ~ 5.88
Improved:  ∆𝜙 ~ 2.94
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TALKING ABOUT LISA

20 from Babak et al 2021, arXiv:2108.01167  

So far we gained insight 
from the theorical point of 
view… but we should take 
into account:

• Frequency band where
LISA will be sensitive

• Involved masses !

• Mission duration



… AND THINGS GET EVEN BETTER

• Adding ℓ = 9, 10 to the infinity flux

• Shorter frequency interval:

• Corresponding to ~1.2 years of 
EOB evolution, ~1.5 ⨯ 105 cycles

• Integrated 
phase differences: 

Standard: ∆𝜙 ~ 2.99
Improved:  ∆𝜙 ~ -0.7421
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SOME TECHNICAL DETAILS

• All the results shown here are obtained with the private MATLAB 
implementation of the code (quite slow)

• We have a public C implementation, that also exploits the post-adiabatic 
evolution (in EOB sense, see arXiv:1805.03891v2) during the inspiral.
The GSF-informed potentials have been already implemented in the 
eccentric branch of the code, the new flux not yet!

• Other improvements: 
- different integration algorithm for the ODEs (maybe symplectic?) 
- eventually turning to machine learning for speed-up 
(e.g. see arXiv:2210.15684v2 for a frequency domain surrogate model for 
BNS based on TEOBResumS)
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https://arxiv.org/abs/1805.03891v2
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WORK IN PROGRESS: SPINNING SECONDARY
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WHY DO WE NEED BENCHMARKS?

• Not always for “calibration”, but frequently just to make the 
right analytical choice:
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… and even different 
possibilities for the EOB 
spin-orbit sector could 

be explored



GENERIC DYNAMICS

• Eccentricity: could be switched on easily, currently 
exploring choices for the radiation reaction:
arXiv:2104.10559v4, arXiv:2207.14002v1, arXiv:2305.19336v1
checked with respect to Teukolsky/RWZ solutions

• Precession: current version of TEOBResumS computes the 
evolution in the ‘co-precessing’ frame and then twists the waveform. 
Only spherical, and not tested for large mass ratios yet… 
Another possibility: Balmelli-Damour Hamiltonian 
(arXiv:1509.08135v1) for a real precessing evolution, but missing 
radiation reaction25
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BEYOND GR: SCALAR-TENSOR EOB

• Ongoing work in computing EOB quantities within massless 
scalar-tensor (ST) theories: see arXiv:2211.15580v2, 
arXiv:2301.01070, arXiv:2304.09052v1
So far only conservative part of the dynamics: local-in-time 
and non-local-in-time ST corrections to the EOB potentials 
at 3PN + computation of the scattering angle
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https://arxiv.org/abs/2211.15580v2
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AND FINALLY… ENVIRONMENTAL EFFECTS

EOB is super flexible, so…

• Accretion (thin) disks: can be included in the flux

• Gravitating contribution: goes into the potentials 

• Could also include a NS secondary (BNS and BHNS EOB 
models already working for comparable-mass binaries)
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DISCUSSION AT THE 1ST TRIESTE MEETING ON 
GRAVITATIONAL WAVES (LAST WEEK IN TRIESTE, SISSA)

• Gravitating contribution not expected to be as relevant as 
the flux contribution from the disk (enters the dynamics at 
higher order, see arXiv:1404.7149v2)

• Mostly should include all the available spinning particle info
(parallel work)

• As for accretion, could compare to FastEMRIWaveform
package with/without inclusion of the effect 
(arXiv:2207.10086v2) or also to augmented analytical kludge
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CONCLUSIONS

• By having a benchmark at large mass ratios we are able to
make the necessary modifications to TEOBResumS so as to
make it useful for (quasi-circular nonspinning) EMRIs 

• Still to do: 
- improve the code and its speed 
- add several features
- various type of resonances will play a role!
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