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Weyl metric

Gravitational field of static and axially symmetric vacuum spacetimes is described by

ds2 = −e2ν dt2 + ρ2e−2ν dφ2 + e2λ−2ν(dρ2 + dz2) , (1)

where t, ρ, φ, z are the Weyl cylindrical coordinates and ν(ρ, z), λ(ρ, z).

Vacuum Einstein equations then

∆ν = 0 (2)

λ,ρ = ρ(ν2
,ρ − ν2

,z) (3)

λ,z = 2ρν,ρν,z , (4)

where

∆ is 3D Laplace operator in cylindrical coordinates (ρ, z)

λ is integrated along some path through the vacuum region
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ν is the precise counterpart of the
Newtonian gravitational potential

But, λ is also present in GR.
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Multiple sources in GR

Consider two distinct solutions, described by ν1, ν2, and λ1, λ2 respectively

Their common gravitational field is given by

ν = ν1 + ν2 , (5)

λ = λ1 + λ2 + λint , (6)

where λint satisfies

λint,ρ = 2ρ(νSchw,ρνdisk,ρ − νSchw,zνdisk,z) , (7)

λint,z = 2ρ(νSchw,ρνdisk,z + νSchw,zνdisk,ρ) . (8)
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SBH+disk model

We wish to study a Schwarzschild black hole described by

νSchw =
1

2
ln

(
R+ + R− − 2M

R+ + R− + 2M

)
, (9)

λSchw =
1

2
ln

[
(R+ + R−)2 − 4M2

4R+R−

]
, (10)

where

R± =
√
ρ2 + (|z | ∓M)2 , (11)

encircled by a thin disc with a convenient density profile.
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Kotlǎŕık and Kofroň (2022)
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Vogt-Letelier disks

In Kotlǎŕık and Kofroň (2022), we found

a family of thin disks; potential first considered by Vogt and Letelier (2009)

metric in closed-forms

including analytical expressions for λint, when superposed with the black hole

density ∝
Mb2m+1ρ2n

(ρ2 + b2)m+n+3/2
, m, n ∈ N0 , (12)

ν
(m,n)
D = −(2m + 1)

(
m + n + 1/2

n

)
M

m+n∑
j=0

Q(m,n)
j

bj

r j+1
b

Pj(| cos θb|) , (13)

r2
b ≡ ρ2 + (|z |+ b)2 , | cos θb| ≡

|z |+ b

rb
, (14)

where Q(m,n)
j are constants, Pj are Legendre polynomials, and M is the total mass of

the disk.
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Physical interpretation

Two simple physical interpretations

1 ideal fluid with surface density σ and azimuthal pressure P (set of solid hoops)

2 two identical counter-orbiting dust streams with surface densities
(σ+ = σ− ≡ σ/2) following circular geodesics

Both characteristics σ and P are encoded in the jump of the normal derivative of the
gravitational potential

σ+P =
ν,z(z = 0+)

2π
eν−λ = σ(ρ)eν−λ , P =

ν,z(z = 0+)

2π
ρν,ρe

ν−λ = σ(ρ)ρν,ρe
ν−λ .
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Petr Kotlǎŕık Quasinormal modes of black holes encircled by a gravitating thin disk



Quasinormal modes

black hole rings

↓

emits gravitational waves

↓

asymptotically flat ⇒ the whole system is dissipative

↓

exponential decay of the waves

↓

quasinormal modes
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QNMs of a scalar field

How do QNMs propagates in the SBH+disk spacetime?

We take a simpler task and study QNMs of a massless scalar field ψ.

The QNMs are governed by the massless Klein-Gordon equation

�ψ = 0 . (15)

In the Schwarzschild coordinates

ρ =
√
r(r − 2M) sin θ , z = (r −M) cos θ , (16)

the wave equation is separable on the Schwarzschild background.
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Isolated Schwarzschild black hole

In the frequency domain

�ψ =

∫ ∞
−∞

e−iωtD2
ωψω(r , θ, φ) dω = 0 =⇒ D2

ωψω(r , θ, φ) = 0 , (17)

where the operator D2
ω reads

D2
ω = f −1(r)ω2 +

1

r2

∂

∂r

(
r2f (r)

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
,

f (r) = 1− 2M

r
. (18)
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The scalar field can be decomposed into spherical harmonics

ψω(r , θ, φ) =
∞∑

mz=−∞

∞∑
`=|mz |

ψω`mz (r)

r
Y`mz (θ, φ) , (19)

which leads into a single radial equation for each mode

d2ψω`mz

dr2
∗

+
[
ω2 − Veff(r)

]
ψω`mz = 0 , (20)

where dr∗ = f −1(r) dr and

Veff(r) =
f (r)f ′(r)

r
+
`(`+ 1)f

r2
, f ′(r) ≡ df

dr
. (21)
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Almost separable systems

But the presence of the (axially symmetric) disk breaks this convenient property.

Cano, Fransen, and Hertog (2020): “almost separable” systems

A Schwarzschild black hole perturbed by a small deformation (gravitating light disk).

Denote ε =M/M and expand the operator into the separable part plus first order
corrections

D2
ω = D2

(0)ω + εD2
(1)ω . (22)
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D2
ω = D2

(0)ω + εD2
(1)ω . (23)

ψω(r , θ, φ) =
∞∑

mz=−∞

∞∑
`=−|mz |

ψω`mz (r)Y`mz (θ, φ) , (24)

The radial and angular equations are not decoupled.

However, we can separate the solution of D2
(0)ωψω(r , θ, φ) for a certain

` = `0,mz = m0 and consistently assume

ψω(r , θ, φ) = ψω`0m0(r)Y`0m0(θ, φ) + ε

∞∑
mz=−∞
mz 6=m0

∞∑
`=−|mz |
` 6=`0

ψω`mz (r)Y`mz (θ, φ) . (25)
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Thus

D2
ωψω(r , θ, φ) =

[
D2

(0)ω + εD2
(1)ω

]
ψω`0m0(r)Y`0m0(θ, φ)+

+ ε

∞∑
mz=−∞

∞∑
`=−|mz |
` 6=`0

D2
(0)ωψω`mz (r)Y`mz (θ, φ) +O(ε2) . (26)

and using the orthogonality of the spherical harmonics, the last term is projected out∫ 2π

0

∫ π

0
Y ∗`0m0

D2
ωψω(r , θ, φ) sin θ dθ dφ =

=

∫ 2π

0

∫ π

0
Y ∗`0m0

[
D2

(0)ω + εD2
(1)ω

]
ψω`0m0(r)Y`0m0(θ, φ) sin θ dθ dφ . (27)
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Performing the integration leads again to the radial equation

d2Ψω`mz

dr2
∗

+
[
ω2 − Veff(r)

]
Ψω`mz = 0 , (28)

with the appropriately modified tortoise coordinate r∗, and

Veff(r) = V Sch
eff (r) + εV corr

eff (r) . (29)
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Effective potential

The disk is described by 4 parameters: 2 positive real M, b, and a pair (m, n).

w (m,n)(ρ) =

(
m + n + 1/2

n

)
(2m + 1)M

2π

b2m+1ρ2n

(ρ2 + b2)m+n+3/2
, m, n ∈ N0 . (30)

Sch,ℳ=0,

ℳ=0.02M

ℳ=0.04M
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Universal behaviour?

BH immersed in spherically symmetric matter exhibits similar behavior (Cardoso
et al., 2022; Konoplya, 2021).

XXm∈[0,6]

b∈[5M,25M]

n∈[0,5]

n

b

ℳ

m

0.479 0.48 0.481 0.482 0.483

0.096

0.0962

0.0964

0.0966

0.0968

ωR/M

-ωI

M

While some quantum corrections may increase the QNMs frequencies.
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Petr Kotlǎŕık Quasinormal modes of black holes encircled by a gravitating thin disk



Brief summary

QNMs of a scalar field propagating in the SBH+disk background

the effective potential is flattened by the presence of the disk

QNMs are shifted towards the same direction in the complex plane

hint of a universal behaviour

it might help to disentangle environmental effects from those induced by quantum
corrections
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Petr Kotlǎŕık Quasinormal modes of black holes encircled by a gravitating thin disk



Brief summary

QNMs of a scalar field propagating in the
SBH+disk background

the effective potential is flattened by the
presence of the disk

QNMs are shifted towards the same direction
in the complex plane

hint of a universal behaviour

it might help to disentangle environmental
effects from those induced by quantum
corrections

Thank you for your
attention.

Questions?
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