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Motivations

• The post-Newtonian framework has very successful in predicting the

GW form in GR + first principle, theoretical sound and

well-established method

• Extra fields are needed when studying : 1. dark energy ; 2. dark

matter ; 3. inflation ; 4. low-energy versions of quantum gravity

• Massless scalar-tensor gravity [⇔ Damour-Esposito-Farèse gravity] is

simple and well-posed

• Strongly constrained by Solar System tests and binary pulsar

observations, but we are interested in constraining it with GWs as

well [BH-NS or NS-NS systems ⇒ different regime !]

• Simple theory, so good toy model to study features of PN in the

presence of a scalar field: can then be extended to more complex

theories, e.g. scalar-Gauss-Bonnet, etc.
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Post-Newtonian methods applied to

scalar-tensor theory



Scope

Inspiral Merger Ringdown 

Post Newtonian 
Theory 

Perturbation 
Theory 

Numerical 
Relativity 
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Generalized Fierz-Pauli-Brans-Dicke theory

Action defined in Jordan frame :

S =
c3

16πG

∫
d4x

√
−g
[
ϕR− ω(ϕ)

ϕ
gαβ∂αϕ∂βϕ︸ ︷︷ ︸

kinetic term but no potential

]
+ Sm[gαβ,m]︸ ︷︷ ︸

no coupling to ϕ

For the post-Newtonian setup, better to work in Einstein frame. Define

φ =
ϕ

ϕ0
and g̃µν =

ϕ

ϕ0
gµν where ϕ −→

r→∞
ϕ0

The action in Einstein frame then reads

S =
c3ϕ0
16πG

∫
d4x
√

−g̃
[
R̃− 3 + 2ω(ϕ)

2φ2
g̃αβ∂αφ∂βφ

]
+ Sm[φ

−1g̃αβ,m]
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Equivalence to DEF gravity

Our Einstein frame action

S =
c3ϕ0
16πG

∫
d4x
√

−g̃
[
R̃− 3 + 2ω(ϕ0φ)

2φ2
g̃αβ∂αφ∂βφ

]
+ Sm[φ

−1g̃αβ,m]

is equivalent to Damour & Esposito-Farèse (DEF) gravity [gr-qc/9602056]:

SDEF =
c3

16πG∗

∫
d4x

√
−g∗

[
R∗ − 2gαβ∗ ∂αφ∗∂βφ∗

]
+Sm

[
A(φ∗)g

∗
αβ,m

]
where G∗ = G/ϕ0, g

∗
µν = g̃µν and φ∗ = T (φ), where

T (x) =
1

2

∫ x

dy

√
3 + 2ω(ϕ0y)

2y2
and A(φ∗) =

1

T −1(φ∗)

Freedom of choice in ω(ϕ) ⇔ T (φ) ⇔ A(φ∗)
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Constraints of DEF gravity

We recall the DEF gravity is written

SDEF =
c3

16πG∗

∫
d4x

√
−g∗

[
R∗ − 2gαβ∗ ∂αφ∗∂βφ∗

]
+Sm

[
A(φ∗)g

∗
αβ,m

]
which can be described by the parameters α0 =

∂A(φ∗)
∂φ∗

and β0 =
∂2A(φ∗)

∂φ2
∗

[gr-qc/9803031]

LIGO-Virgo experiments

cannot constrain better than

binary pulsars, but how

about ET and LISA ?
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Field equations

The field equations should be expressed using the Landau & Lifschitz

formulation. Perturbation of (conformal inverse) metric around

Minkowski:

hµν =
√
−g̃g̃µν − ηµν

[At linear level, this is equivalent the “trace reversed metric”]

Perturb (normalized) scalar field around background value:

φ = 1 + ψ

Restriction to harmonic gauge ∂µh
µν = 0, the field equations read:

□hµν =
16πG

c4ϕ0

[
φ(−g)Tµν +

c4ϕ0
16πG

Λµν [h, ψ]

]

□ψ =
8πG

c4ϕ0

[
φ
√
−g

[3 + 2ω(ϕ)]

(
T − 2φ

∂T

∂φ

)
+
c4ϕ0
8πG

Λs[h, ψ]

]
where the non-linear couplings are described by Λµν [h, ψ] and Λs[h, ψ] 8



Near-zone and exterior vacuum zone

Figure from [1410.7832] 9



Linearized metric in exterior vacuum

N.B. I will focus on the scalar field for pedagogy

In the exterior vacuum zone, we formally perform a multipolar

post-Minkowskian expansion ψ = Gψ1 +G2ψ2 + ...

At linear level, the scalar field equation reads □ψ1 = 0, so we can express

it as a multipolar expansion [Thorne 1980]:

ψ1 = − 2

c2

∑
ℓ⩾0

(−)ℓ

ℓ!
∂L
[
r−1IsL

]
The “source moments” can be matched to a near-zone,

post-Newtonian (v ≪ c) computation involving the matter, such that

they can be expressed as functions of the phase space variable of the

compact binary system

IsL[y1,y2,v1,v2]
10



Multipolar moments: an example

For example, we have [2201.10924]

Isi = −m1(1− 2s1)y
i
1

ϕ0(3 + ω0)
− m2(1− 2s2)y

i
2

ϕ0(3 + ω0)
+O

(
1

c2

)
where various ST parameters come from

ω(ϕ) = ω0 + (ϕ− ϕ0)ω
′
0 + ...

and [for A ∈ {1, 2}] :

mA(ψ) = mA (1 + sAψ + ...)

Note that the weak equivalence principle is broken so the inertial mass of

a star (seen as a point-particle) can depend on the local value of the

scalar field, hence the need to introduce sensitivities, e.g.

sA =
d lnmA(ϕ)

d lnϕ

This allows to account for spontaneous scalarized stars !
11



MPM metric in exterior vacuum

Now that the linear metric is entirely determined, we go back to the

MPM expansion: ψ = Gψ1 +G2ψ2 + ... and inject it into our full

vacuum field equation

□ψ = Λs[h, ψ]

where Λs[h, ψ] is at least quadratic in the fields. Thus, we contruct the

MPM metric by iterating:

□ψn = Λ(n)
s [h1, ..., hn−1;ψ1, ..., ψn−1]

This generates nonlocal effects such as tail, the quadratic memory, etc. !

12



Radiative moments

Once the MPM metric constructed, we can discard all subdominant

terms in the rt→ ∞ limit. We thus recover an (asymptotically)

multipolar structure:

ψ ∼ 1

r

∑
n̂LUs

L

We recover the tail terms of GR , but also find new ST tail terms and a

new ST memory term:

Uij =
(2)

Iij +
2GM

ϕ0c3

∫ +∞

0

dτ
(4)

Iij(u− τ)

[
ln

(
cτ

2b0

)
+

11

12

]
+

G(3 + 2ω0)

3c3

∫ +∞

0

dτ
[(2)
Is⟨i

(2)

Isj⟩

]
(u− τ) + (inst) +O

(
1

c4

)

Us
i =

(1)

Isi +
2GM

ϕ0c3

∫ +∞

0

dτ
(3)

Isi (u− τ)

[
ln

(
cτ

2b0

)
+ 1

]
+ (inst) +O

(
1

c6

)
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Fluxes at infinity

Now that we know that asymptotic structure of the scalar waves [idem

for GWs] at I+, we can deduce the fluxes of energy and angular

momentum that they carry [2401.06844]:

Fs =
c3R2(3 + 2ω0)ϕ0

16πG

∫
d2Ωψ̇2

=

∞∑
ℓ=0

Gϕ0(3 + 2ω0)

c2ℓ+1ℓ!(2ℓ+ 1)!!
U̇s
L U̇s

L

Gs
i =

c3R3(3 + 2ω0)ϕ0
16πG

∫
d2Ωψ̇ϵiabna∂bψ

=

∞∑
ℓ=1

Gϕ0(3 + 2ω0)

c2ℓ+1(ℓ− 1)!(2ℓ+ 1)!!
ϵiab Us

aL−1 U̇s
bL−1

where we have used ψ ∼ 1
r

∑
n̂LUs

L(t− r/c).
14



Quasicircular orbits

Why are we interested in the fluxes ? Consider the case of a

quasicircular orbit. First, the angular momentum flux is related to the

energy flux by F = ωG, so we only consider the energy balance law:

dE

dt
= −F −Fs

In the COM frame, the only dynamical variables are r = |y1 − y2|,
n = (y1 − y2)/r and v = v1 − v2.

The fluxes depend on them only through r ≈ (Gm/ω2)2/3,

v2 ≈ (Gmω)2/3 and n · v ≈ 0, where ω is the orbital frequency.

Thus, the energy balance equation reduces to an equation of the type:

dω

dt
= f(ω)

This immediately yields the phase and frequency evolution !
15



The phase at 1.5PN for quasi-circular orbits

In [2201.10924], we found:

ϕcirc = − 1

4ζS2
−νx

1/2

[
x−1

+
3

2
+ 8β̄+ − 2γ̄ − 12β̄+γ̄

−1 − 72

5
ζ−1S−2

−

− 6ζ−1γ̄S−2
− − 12β̄−γ̄

−1S−1
− S+

+ δ
[
− 8β̄− + 12β̄−γ̄

−1 + 12β̄+γ̄
−1S−1

− S+

]
+

7

2
ν

+ 3πx1/2 log(x)
(
1 +

γ̄

2

)
+ x

{
complicated expression

}

+
πx3/2

1− ζ

{
complicated expression

}]
.

This is the main observable in a GW ! 16



Comparison to NR

Numerical simulation [2304.11836] found good agreement with our results:

17



Comparison to NR (cont’d)

even for the DC memory effect !

18



The quasi-Keplerian representation

for alternative theories of gravity



The Kepler solution

We study the two-body problem in the context of Newtonian gravity,

described by the relative acceleration [in the COM frame]:

ai = ai1 − ai2 = −G12mn
i

r2

where G12 = G in general relativity, but in ST theory reads

G12 =
G

ϕ0

(
1 +

(1− 2s1)(1− 2s2)

3 + 2ω0

)
In the bound case, we know that the orbit is an ellipse:

r =
a(1− e2)

1 + e cos(ϕ− ϕperi)

where a is the semimajor axis and e the eccentricity (e < 1 for bound

orbits), given in terms of the energy (E < 0) and angular momentum J :

a = −Gm
2E

and e =

√
1 +

2EJ

G2m2
19



The Kepler solution

To describe the time evolution, it is however more practical to use the

following set of three equations

r = a(1− e cosu)

ℓ = n(t− t0) = u− e sin(u)

ϕ− ϕ0 = v(u)

where we have introduced

• the eccentric anomaly u, which acts as an affine parameter

• the true anomaly v(u) ≡ 2 arctan
[√

1+e
1−e tan

(
u
2

)]
• the mean motion n ≡ 2π/P , where P is a time period

• the mean anomaly ℓ = n(t− t0), which increases linearly with time

and goes from 0 to 2π over one orbit

20



The Kepler solution

r = a(1− e cosu)

ℓ = n(t− t0) = u− e sin(u)

ϕ− ϕ0 = v

v = 2arctan

[√
1 + e

1− e
tan

(u
2

)]

Figure from [gr-qc/0407049]
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The quasi-Keplerian solution at 1PN order

What happens if we now want to solve the equations of motion for the

1PN acceleration ? ai = −G12mni

r2
+ 1

c2
(many terms)i

Damour & Deruelle [Ann.IHP.Phys.Th. 43, 1 (1985), p.107] showed that the

equations of motion then reads

r = ar(1− er cosu)

ϕ− ϕ0 = Kv

n(t− t0) = u− et sin(u)

v(u) = 2 arctan

[√
1 + eϕ
1− eϕ

tan
(u
2

)]
which is the same equation as before, except:

• there are now three eccentricities er, et, eϕ

• pericenter precession appears via the factor K = 1+ k (with k ≪ 1)

• ar and n acquire post-Newtonian corrections
22



Doubly periodic structure of QK motion

The time between two periastrons

is the radial period denote P , so the

mean motion n = 2π/P is the

radial frequency.

The time for the angular coordinate ϕ

to go from 0 to 2π is P/K, so ω = nK

is the angular frequency

Thus, K = 1 + k with k ≪ 1 is a

measure of the pericenter precession

(1)

23



The quasi-Keplerian solution at 2PN order

Damour & Schäfer [Nuovo Cim.B 101 (1988) 127] showed that the QK

parametrization reads at 2PN

r = ar(1− er cosu)

ϕ− ϕ0 = K
[
v + fϕ sin(2v) + gϕ sin(3v)

]
n(t− t0) = u− et sin(u)+ft sin(v) + gt(v − u)

v(u) = 2 arctan

[√
1 + eϕ
1− eϕ

tan
(u
2

)]

Here, the new parameters fϕ, gϕ, ft and gt are all of order O(1/c4),

while all other parameters acquire 2PN corrections.

But how do we determine the values of these parameters ?

24



Determining the QK parameters

Assume we are working in some theory of gravity [e.g. GR or ST theory],

and that we have determined (in a PN sense):

E = f(r, ṙ, ϕ̇) and J = g(r, ṙ, ϕ̇)

For many theories of gravity, we can invert this as

ṙ2 = A+
B

r
+
C

r2
+
D1

r3
+
D2

r4
+
D3

r5
+O

(
1

c6

)
ϕ̇ =

F

r2
+
I1
r3

+
I2
r4

+
I3
r5

+O
(

1

c6

)
where A, B, C and F are of order 1, but D1 and D2 are 1PN and the

others 2PN. All these parameters are functions of E and J .
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Determining the QK parameters (cont’d)

Solving these EOM [technical !] directly yields the 2PN QK

representation, and one reads off the expressions of the PK parameters

(ar, et, gt, ...) in terms of A, B, D1, ... For example [2401.06844]:

ar = −B
A

+
D1

2C
+

2BD2
1 − 2BCD2 + 4B2D3 −ACD3

2C3
+O

(
1

c4

)
Expression of A, B, ... depends of the theory. For example, in ST theory:

B = G̃αm

{
1 + ε

[
3 + γ̄ − 7

2
ν

]
+ ε2

[
9

4
+

3

4
γ̄ + ν

(
− 12− 15

4
γ̄
)
+

21

4
ν2
]}

where ε = −2E/(mνc2) > 0 and ε = O(1/c2).

To get the GR results, replace G̃α→ G and γ̄ → 0.

If (i) you have E = f(r, ṙ, ϕ̇) and J = g(r, ṙ, ϕ̇) for your favorite

theory; (ii) it has some nice properties

⇒ use these results to immediately obtain the QK representation
26



Applications at relative 1PN order



Fluxes at Newtonian order

At Newtonian order [reminder: the leading order is −1PN], the flux is

instantaneous, i.e. no tails or memory. The QK representation allows us

to write the fluxes only in terms of the eccentric anomaly:

F = f [r, ϕ, ṙ, ϕ̇] = g[r, ϕ] = h[u]

After some trigonometry, we find that the structure is in fact

F =
∑
k

[
αk

[1− et cos(u)]k
+

βk sin(u)

[1− et cos(u)]k

]
The orbit averaged flux reads:

⟨F⟩ = 1

P

∫ P

0
dtF =

1

2π

∫ 2π

0
dℓF =

1

2π

∫ 2π

0
du

dℓ

du
F

where dℓ/du = 1− et cos(u). We can then use:

1

2π

∫ 2π

0

du

[1− et cos(u)]n
=
Pn−1(1/

√
1− e2t )

(1− e2t )
n/2

27



Averaged fluxes at Newtonian order

I find at Newtonian (relative 1PN) order [2401.06844]

⟨F⟩ = 32c5x5ν2(1 + γ̄/2)

5G̃α
·
1 + 73

24e
2
t +

37
96e

4
t

(1− e2t )
7/2

⟨G⟩ = 32c2mx7/2ν2(1 + γ̄/2)

5
·
1 + 7

8e
2
t

(1− e2t )
2

⟨Fs⟩ = c5x4ν2ζ

3G̃α

[
4S2

−
1 + e2t /2

(1− e2t )
5/2

+
x

(1− e2t )
7/2

(
C0 + C2e2t + C4e4t

) ]

⟨Gs⟩ = c2mx7/2ν2ζ

3

[
4S2

−
1− e2t

+
x

(1− e2t )
7/2

(
D0 +D2e

2
t

) ]

where we introduce the dimensionless PN parameter

x =

(
G̃αmω

c3

)2/3

Here, ω = nK is the angular frequency (and n is the radial frequency) 28



Orbital evolution at leading Newtonian order

At leading order, we consider: (i) a Keplerian orbit; (ii) the Newtonian E

and J ; (iii) the −1PN fluxes Fs and Gs. The balance equations

dE/dt = −Fs and dJ/dt = −Gs can be rewritten as [2401.06844]〈
da

dt

〉
= −8

3

(G̃αm)2ζS2
−ν

c3
· 1 + e2/2

a2(1− e2)5/2〈
de

dt

〉
= −

(G̃αm)2ζS2
−ν

c3
· 2e

a3(1− e2)3/2
.

Eliminating the time dependency and solving: a =
c0e

4/3

1− e2

In GR, the equivalent formula (due to Peters [PhysRev.136.B1224]) reads

a =
c′0e

12/19

1− e2

(
1 +

121

304
e2
)870/2299

29



The “Peters and Mathews” formula for ST theories

ST

GR

0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.010

0.100

1

10

100

e

a
[G
m
c
-
2
]
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Evolution of orbital parameters at 1PN order

This time, we work at 1PN order in the QK parametrization and

Newtonian order in the fluxes. THis time, we rewrite the balance

equations dE/dt = −F −Fs and dJ/dt = −G − Gs in terms

of x and et [2401.06844]〈
dx

dt

〉
=

2c3ζx4ν

3G̃αm

{
4S2

−(1 +
1
2e

2
t )

(1− e2t )
5/2

+
x

15(1− e2t )
7/2

(
C1 + e2tC2 + e4tC3

)}
〈
det
dt

〉
= −c

3ζx3ν

G̃αm

{
2S2

−et

(1− e2t )
3/2

+
x et

15(1− e2t )
5/2

(
C4 + e2tC5

)}

Since all other QK parameters (e.g. ar, er, ft, ...) can be expressed in

terms of the pair (x, et), we have entirely characterized the motion!
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GW waveform at Newtonian order

A common description of the GW waveform is to perform a mode

decomposition.

h+ − ih× =
2G̃(1− ζ)mνx

Rc2

√
16π

5

+∞∑
ℓ=2

ℓ∑
m=−ℓ

Ĥℓme−imϕ
−2Y

ℓm(Θ,Φ)

ψ =
2iG̃ζ

√
αS−mν

√
x

Rc2

√
8π

3

+∞∑
ℓ=0

ℓ∑
m=−ℓ

Ψ̂ℓme−imϕ Y ℓm(Θ,Φ)

Complete mode decomposition at Newtonian (relative 1PN) order,

e.g. [2401.06844]:

Ψ̂11 =
1− e2t − iet

√
1− e2t sinu√

1− e2t (1− et cosu)
+O(x)

Inversing the Kepler equation ℓ = u− et sin(u): numerically or using:

u = ℓ+ 2

∞∑
n=1

1

n
Jn(ne) sin(nℓ)

32



Conclusion



Recapitulation

In this work, I have:

• solved the EOM for ST theories at 2PN order for an quasi-elliptic

system with the 2PN quasi-Keplerian parametrization

• extended the method in a way that greatly facilitates the same

computation for other alternative theories of gravity

• computed the fluxes of energy and angular momentum up to

Newtonian order [relative 1.5PN order]

• obtained the evolution equations for x and et at 2.5PN order

• computed the waveform modes at Newtonian [relative 1PN] order

33
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computation for other alternative theories of gravity

• computed the fluxes of energy and angular momentum up to 1.5PN

order [relative 2.5PN order], including tail and memory contributions

• obtained the evolution equations for x and et at 2.5PN order
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Prospects

Possible directions for future work

• full waveform at 1.5PN [relative 1.5PN] ⇒ need to include some

post-adiabatic contribution (i.e. not only the secular evolution of

orbital parameters, but also their oscillations over an orbit)

• data analysis applications: can we use this to constraint the theory ?

[most current test of alternative are done for agnostic deviations to

GR]

• comparison with numerical relativity

• unbound (quasihyperbolic) systems

• including spins and/or precession

• slightly more complicated theories, e.g. scalar-Gauss-Bonnet

• study theories exhibiting screening, e.g. k-essence [is PN theory

applicable ?]
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