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Preface of the updated Review

It was just before the turn of millenium when | was asked by Bernd Schmidt to write a
chapter on exact solutions to Einstein's equations for the Festschrift dedicated to Jirgen
Ehlers' 70th birthday. The book \citep{BGS} appeared in 2000 and a few years later | was
asked by Bernard Schutz, the founder of the Living Reviews in Relativity, to write a
contribution on the solutions. | continued to devote some time to collecting new references
and writing new sections of the article until about 2011. Its length and number of references
grew substantially as compared with the original chapter.

However, in 2012 | and my colleagues spent considerable time by organizing the
international conference "Relativity and Gravitation" in Prague to commemorate the 100
anniversary of Albert Einstein stay in Prague.

| was then involved in editing two volumes of the Proceedings \citep{aeiprgl,aeiprg?2}, in
various other activities and duties, and left the article unfinished. When last year the new
editors asked me what is the state of the article and revealed an interest to publish it, |
decided to update the article.
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New form of the C metric with cosmological constant

Yu Chen, Yen-Kheng Lim, and Edward Teo
Department of Physics, National Universitv of Singapore, Singapore 119260, Singapore
(Received 12 January 2015; published 5 March 2015)

The new form of the ¢ metric proposed by Hong and Teo, in which the two structure functions
are factorized, has proved useful in its analysis. In this paper, we extend this form to the case when a
cosmological constant is present. The new form of this solution has two structure functions which
are partially factorized; morsover, the roots of the siructure functions are now regarded as fundamental
parameters, This leads 1o a natural representation of the solution in terms of its so-called domain structure,
in which the allowed coordinate range can be visualized as a “box™ in a two-dimensional plot. The solution
is then completely parametrized by the locations of the edges of this box, at least in the uncharged case. We
also briefly analyze other possible domain structures—in the shape of a triangle and trapezoid—that might
describe physically interesting space-times within the anti-de Sitter C metric.
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1. INTRODUCTION

The C metric is a static solution to the vacuum Einstein
field equations, whose history dates back to 1918 when it
was discovered by Levi-Civita [1]. It was subsequently
rediscovered by various other authors in the early 1960s
[2-4]; in particular, it was Ehlers and Kundt (4] who, in the
process of classilying degenerate stalic vacuum solutions,
gave it the “C” designation that it is known by today.
However, its interpretation remained obscure until 1970,
when Kinnersley and Walker (5] showed that the C metric
actually describes a Schwarzschild black hole undergoing
uniform acceleration. It was also these two authors who
introduced the well-known form of the C metric that
would remain the de fucto standard form for the three
decades or so.

To see how Kinnersley and Walker obtained their form of
the € metric, we need to start with the slightly more general
form used by Ehlers and Kundt [4]:

1 . dy?  di?
ds? = ——— | F{y)d? = — 4+ —— + G(x)dg?|.
== = [0~y togg TN

(n

where the structure functions G{x) and F(y) are cubic

polynomials in x and y, respectively, satisfying the condition
F(x) = G(x). 2

Thus, the two polynomials share the same coefficients. It
would appear that this solution has four parameters, which
can be taken to be the coefficients of G(x), say. However,
two of them are actually unphysical, and can be gauged
away by a suitable coordinate transformation. Kinnersley
and Walker considered the following affine coordinate
transformation:

PACS numbers: 04.70.Bw

X =Aggx+ ey, ¥ =Acyy + €1,

r=cyr. ¢ =cop. (3)
under which the metric (1) gains an overall factor but
otherwise retains the same general form:

L I 1_‘]-“'_2 .'1‘5, - 2
452 = drr o [P0 ~ s+ gy G-

4)

Note that the structure functions G{x) and F(y} are still
cubic polynomials satisfying (2), although with new coef-
ficients depending on A, ¢y, and ¢,. Kinnersley and Walker
then used the coordinate freedom in (3) to set G{x) to be
‘ Glx) = 1 —x = 2mAx*. [ (5)
In particular, the linear coefficient has been set to zero.
The parameters m and A are related to the mass and
acceleration of the black hole, respectively. In the limit
A = 0, the usual Schwarzschild metric with mass parameter
m can be recovered from this form of the € metric. On the
other hand, in the limit m — 0, the usual Rindler space
metric with acceleration parameter A can be recovered.
A major disadvantage of the Kinnersley-Walker form of
the C metric is that the roots of the structure function (5) are

T

¢ ome to write down in term the parameters m
and A. Nevertheless, knowledge of these roots is important,
since they encode the locations of the axes and horizons
in the space-time. Almost any study of the geometnical
properties of the space-time will involve these roots and
would be very complicated as a result. Even if the roots
were not explicitly expressed in terms of m and A, one
would need to have a handle on their dependence on these
parameters.

YU CHEN, YEN-KHENG LIM, AND EDWARD TEQ

In 2003, Hong and Teo [6] propesed a new form of the C
metric that would alleviate this difficulty. Instead of using
the coordinate freedom in (3} to set the linear coelficient of
Gix) to zero, they used this freedom to set it to the value

2mA. As aresult, G{x) can be put in the factorized form;

() = (1= (1 +2mAz). [ (6)

In this form, the roots of the structure functions are obvious
to read off: the two axes of the space-time are located at
x = %1, while the acceleration and black-hole horizons
are located at y = —1, — 51+, respectively. These simple
expressions lead to potentially drastic simplifications when
analyzing the properties of the C metric, as demonstrated
in Ref. [6].

The new form (6) is related 1o the previous one (5) by a
coordinate transformation and redefinition of parameters.
In particular, s and A still retain their interpretations as
the_mass and acceleration parameters of the black hole.
respectively. Again, the Schwarzschild metric can be
recovered in the limit A — 0. while the Rindler space
metric can be recovered in the limit m — 0. However, we
emphasize that in the general case m, A # 0, the parameters
appearing in (6) are inequivalent to those appearing in (3).

The € metric can be strughtforwardly extended to
include charge, by adding a quartic term to the structure
functions. In the Kinnersley-Walker form, the metric is still
given by (4), but the structure function (5) is generalized to

Gx) = 1 -2 = 2mAs® - gAY, (7)
where g is the charge parameter of the black hole. Being a
quartic polynomial, the roots of G{x) are now even more
cumbersome 0 wrle down than in the vacuum case,
Fortunately, the factorized form (6) can be extended to
the charged case. It was shown in Ref. [6] that, by a
coordinate transformation and redefinition of parameters,
(7) can be written as

L6 = (1= +ran(+ran,| @

where ro = m & \,f';j—_qz are the locations of the hori-
zons in the usual form of the Reissner-Nordstrém metric. Tn
this form, the roots of G{x] are trivial to read off: the two
axes of the space-time are again located at x = £1, while
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Gix) =1 —x* =2mAx’ — (@ + g")A%%,  (9)

where a is the rotation parameter of the black hole.
In Ref. [7], Hong and Teo showed that G(x) can again
be written in the factorized form (8). but with
rp=m+ v‘?— a’ — g°. The latter are just the locations
of the honizons in_the Bover-Lindquist form of the Kerr-

Newman metric. However, as Hong and Teo pointed out,

one key difference in this case is that this new form of the
rotating C metric is nof related to the traditional form (9) by

a coordinate transformation. It turns out that the traditional

form_of the rotating € metric possesses so-called Dirac-
dogs not. To avoid such singularities, the structure func-
tions necessarily take the factorized form (8),

A natural question at this stage is whether this new form
of the (static, charged) C metric can be extended to include
acosmological constant A. The C metric with cosmological

constant is traditionally written in the form (4), with the
structure functions

i G(x) = 1 —x% — 2mAx’ — g2A%xY, |

1
F(y) = (I & ﬁ) — ¥ = 2mAy* = @EaAdyt, | (10)
\ 7 |

where #? = -3/A. Note that G(x) has exactly the same
form as in (7), but that F(x) now differs from G(x) by a
constant term:

Flx) = 6(0) ~ 7. (1)

roots of G(x) and those of F{y]. In particular, a factorized

form for G{x) does not lead to one for F(v), or vice versa.

In Ref. [7], a tentative proposal was made to write G(x) in
the factorized form (8), at the expense of leaving F(y)
unfactorized. However, an unsatisfactory consequence is
that the r. appearing in G{x} have no relation to the
locations of the horizons of the Kerr-Newman-de Sitter/
anti-de Sitter black hole. This is perhaps not unexpected.
since the locations of the horizons are encoded by the roots
of F{v}, which as mentioned are now not the same as those
of G(x).

In this paper, we would like to find a new form of the C

metric_ with cosmological constant that retains the nice
features of the factorized form of Ref. [6]. To this end,

the acceleration and two black-hole horizons are located at
y = -1, -1, respectively.

" The (charged) C métric can also be extended to include
rotation. In this case, the metric (4) has to be replaced by a
more complicated stationary form—not reproduced here—
which nevertheless still depends on two structure functions
G(x) and F(y) satisfying (2). In the Kinnersley-Walker
form, G(x) is given by

recall that two of the roots of G(x) are physically
significant, in that they represent the two axes in the
space-time. The coordinate range for x lies between these
two roots. On the other hand, two of the roots of F(y) are
physically significant, in that they represent the acceler-
ation and (outer) black-hole horizons. The coordinate range
for y lies between these two roots. It is therefore natural to

take these two roots of G(x) and two roots of F'ly) as

Hon
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“The physicist is always interested in the special case; he is never interested
in the general case. He is talking about something; he is not talking abstractly
about anything. He wants to discuss the gravity law in three dimensions; he
never wants the arbitrary force case in n dimensions. So a certain amount of
reducing is necessary, because the mathematicians have prepared these things
for a wide range of problems. This is very useful, and later on it always turns
out that the poor physicist has to come back and say, ‘Excuse me, when you

wanted to tell me about four dimensions. ..” 7 Of course, this is Feynman, and
from 1965. ..

However, physicists are still rightly impressed by special explicit formulae. Explicit solutions
enable us to discriminate more easily between a "~“physical" and "“pathological” feature.

Where are there singularities?

What is their character?

How do test particles and fields behave in given background spacetimes?
What are their global structures?

Is a solution stable and, in some sense, generic?

Clearly, such questions have been asked not only within general relativity.



By @tudying a special explicit soliition one acquires an‘intuifion which,
in turn, stimulates further questions relevant to more general situations. Con-
sider, for example, charged black holes as described by the Reissner-Nordstrém
solution. We have learned that in their interior atCauchy horizon exists and
that the'singularities are timelike. The singularities can be seen by, and thus
exert an influence on, an observer travelling in their neighborhood. However,
will this violation of the (strong)i¢osmic eensorship persist when the black hole
is perturbed by weak (“linear”) or even strong (“nonlinear”) perturbations?
We shall see that, remarkably, this question can also be studied by explicit
exact special model solutions. Still more surprisingly, perhaps, a similar ques-
tion can be addressed and analyzed by means of explicit solutions describing
completely diverse situations — the collisions of plane waves. Such collisions
may develop Cauchy horizons and subsequent timelike singularities. The the-
ory of black holes and the theory of colliding waves have intriguing structural
similarities which, first of all, stem from the circumstance that in both cases
there exist two symmetries, i.e. two Killing fields. What, however, about more
general situations? This is a natural question inspired by the explicit solu-
tions. Then “the poor physicists have to come back™ to a mathematician, or
today alternatively, to a numerical relativist, and hope that somehow they will
firmly learn whether the cosmic censorship is the “truth”, or that it has been
a very inspirational, but in general false conjecture. However, even after the
formulation of a’ conjecture about a general situation inspired by particular
exact solutions, newly discovered exact solutions can play an important role
in verifying, clarifying, modifying, or ruling out the conjecture. And also “old”
solutions may turn out to act as asymptotic states of general classes of models,
and so become still more significant.
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15.4 Vacuum, Einstein-Mazwell and pure radiation fields — 233

For the Ricei tensor type [(11,2)] the group G5 on Va does not imply
the existence of a G4: the Vaidya metric (Table 15.1)

ds? = r2(d0? + sin? 9 dg?) — 2dudr — (1 — 2m(w)/r)du®,  (15.20)

m(u) being an arbitrary function of the null coordinate u, has G3 on V5
as the maximal group of motions (unless m = const).

15.4.4 Spherically- and plane-symmetric fields

The spherically-symmetric Einstein—-Mazwell field with A = 0 is the
Reissner-Nordstrém solution

ds? = r2(dv? + sin? ¥ dp?)
+(1 = 2m/r +e2/r) 7 dr? — (1 — 2m/r + €2 /r%)de?,(15.21)

which describes the exterior field of a spherically-symmetric charged body
(its form in isotropic coordinates can be found e.g. in Prasanna (1968)).
For e = 0, we obtain the Schwarzschild solution (15.19). We give it here
in various other coordinate systems which are frequently used:
ISOTROPIC COORDINATES:

ds® = [1+ m/2r]*[dz” + dF” + d=°] — [1 — m/2r] dt*/[1 + m /27",
r =7l +m/2r)? (15.22)

(for isotropic coordinates covering also r < 2m, see Buchdahl 1985).
EDDINGTON-FINKELSTEIN COORDINATES (Eddington 1924, Finkelstein
1958):

ds?

r2(dv? + sin? 0 dp?) — 2dudr — (1 — 2m/r)du?,

t—[(1—2m/r)"Ydr =t +2mIn(r — 2m). (15.23)

13

KRUSKAL-SZEKERES COORDINATES (Kruskal 1960, Szekeres 1960):
ds? = rz(dﬁ? + sin? ¥ dc,oQ) — 39m3r—Lle="/2Mdy du, (15.24)
u= —(?"/Qm o l)l/QCrfmnC—t,Mm, v = (1"/21’3’}: _ 1)1/2C1-/-:1-n1{::/4ml
LEMAITRE-NOVIKOV COORDINATES:
ds® = V(a0 +sin® 0 dp®) + [L - ef*(r)] 71 (Y'dr)* - d77, (15.25)
Y2 —om/Y = —=f3(r) '

(e = 0: Lemaitre (1933); £ = 1, f2 = (1 +r?)~1: Novikov (1963)).
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3 The Reissner-Nordstrom Solution

This spherically symmetric solution of the Einstein-Maxwell equations was de-
rived independently! by H. Reissner in 1916, H. Weyl in 1917, and G. Nord-
strom in 1918, It represents a spacetime with no matter sources except for a
radial electric field, the energy of which has to be included on the right-hand
side of the Einstein equations. Since Birkhoff’s theorem, mentioned in con-
nection with the Sehwarzschild solution in Section 2.2, can be generalized to
the electrovacuum case, the Reissner-Nordstrom solution is the unigque spher-
ical electrovacuum solution. Similarly to the Schwarzschild solution, it thus
describes the exterior gravitational and electromagnetic fields of an arbitrary
— static, oscillating, collapsing or expanding — spherically symmetrie, charged
body of mass M and charge (). The metric reads

2 2y —1
ds® = — (1 2 + %) dt* + (1 - Eilf + (L) dr?

r r2

+ 1% (d6” + sin” 0 di”) (9)

the electromagnetic field in these spherical coordinates is deseribed by the
“classical” expressions for the time component of the electromagunetic potential
and the (only non-zero) component of the electromagnetic field tensor:

A = —Q, F,=-F,= —%_ (10)

r T

A number of authors have discussed spherically symmetric, static charged dust
configurations producing a Reissner-Nordstrém metric outside, some of them
with a hope to construct a “classical model” of a charged elementary parti-
cle (see Stephani et al. (2003) for references). The main influence the metric
has exerted on the developments of general relativity, and more recently in
supersymmetriec and superstring theories (see Section 3.2), is however in its
analytically extended electrovacuum form when it represents charged, spheri-

cal black holes.

3.1 Reissner-Nordstrom black holes and the question of cosmic censorship

The analytic extensions have qualitatively different character in three cases,
depending on the relationship between the mass M and the charge . In the

1 In the literature one finds the solution to be repeatedly connected only with the names of
Reissner and Nordstrém, except for the “exact-solutions-book” Stephani et al. (2003): there
in four places the solution is called as everywhere else, but in one place (p. 257) it is referred
to as the “Reissner-Weyl-solutions”. An enlightening discussion on p. 209 in Stephani et al.
(2003) shows that the solution belongs to a more general “Weyl's electrovacuum class” of
clectrostatic solutions discovered by Weyl (in 1917) which follow from an Ansatz that there
is a functional relationship between the gravitational and electrostatic potentials. As will be
noticed also in the case of cylindrical waves in Section 10, if “too many” solutions are given
in one paper, the name of the author is not likely to survive in the name of an important
subclass. . .
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transitive, so Killing orbits admit orthogonal surfaces (Berger et al., 1995:
Carot et al., 1999: Mena Marugan, 2000). The orthogonal transitivity thus
excludes the possibility of a global rotation. In other words in vacuo there
can be in fact no smooth ‘rotating cylindrical waves’. With a material source
present as in the case of the rigidly rotating dust cylinder (Bonnor, 1980b),
for example, the spacetime can, of course, be regular everywhere with a non-
vanishing angular momentum per unit length. Bondi (1994) studied general
changes in time of such systems which can lead to radiation. As he noticed,
the conservation of angular momentum occurs even if gravitational waves are
emitted by the cylinder since the cylindrical symmetry of the waves precludes
their carrying angular momentum.

The metric containing a second degree of freedom was discovered by Jiirgen
Ehlers (working in the group of Pascual Jordan), who used a trick similar to
Beck's on the generalized (stationary) Weyl metrics, and independently by
Kompaneets (see the discussion in Stachel (1966)). In the literature (e.g. Piran
et al. (1986); d’'Inverno (1997)) one refers to the Jordan-Ehlers-Kompaneets
form of the metric:

ds? = 2% (—dtz + rlp‘Z) + e (dz + wﬂ’(p)2 + ple Wyl (84)

Here, the additional function w(t, p) represents the second polarization.

Despite the fact that cylindrically symmetric waves cannot describe ex-
actly the radiation from bounded sources, both the Einstein-Rosen waves and
their generalization (84) have played an important role in clarifying a num-
ber of complicated issues, such as the energy loss due to gravitational waves
(Thorne, 1965). An extensive literature exists on cylindrical waves interact-
ing nonlinearly with cosmic strings (see Garriga and Verdaguer (1987); Xan-
thopoulos (1987, 1986, 1987); Economoun and Tsoubelis (1988); Dagotto et al.
(1990); Manojlovic and Mena Marugan (2001), and the monograph Anderson
(2002) ). Other applications of radiative cylindrical metrics involve the asymp-
totic structure of radiative spacetimes (Stachel, 1966), the dispersion of waves
(Chandrasekhar and Ferrari, 1987), testing the quasilocal mass-energy (Tod,
1990), testing codes in numerical relativity (d'Inverno, 1997), investigation of
the cosmic censorship (Berger et al., 1995), and quantum gravity in a sim-
plified but field theoretically interesting context of midisuperspaces (Kuchar,
1971; Ashtekar and Pierri, 1996; Korotkin and Samtleben, 1998).

As mentioned above, the vacuum metrics (82) considered by Mashhoon
et al. (2000) as “rotating gravitational waves” cannot have a regular axis since
this requires the Killing orbits to admit orthogonal surfaces. However, the axis
can represent a rotating cosmie string. One can investigate dragging of inertial
frames by combined effects of waves interacing with a rotating cosmic string
(Bicak et al., 2008). Assuming the ‘rotation parameter’ w in (82) is small
so that the terms in Q(w?) can be neglected, the inspection of vacuum field
equations following from the Anzatz (82) then reveals that one can choose W =
p and field equations for 1> and  are the same as for Einstein-Rosen waves. The
rotational perturbation w is determined by evolution equation (p*e™ Q’w’)' =0
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New form of the C metric with cosmological constant

Yu Chen, Yen-Kheng Lim, and Edward Teo
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The new form of the ¢ metric proposed by Hong and Teo, in which the two structure functions
are factorized, has proved useful in its analysis. In this paper, we extend this form to the case when a
cosmological constant is present. The new form of this solution has two structure functions which
are partially factorized; morsover, the roots of the siructure functions are now regarded as fundamental
parameters, This leads 1o a natural representation of the solution in terms of its so-called domain structure,
in which the allowed coordinate range can be visualized as a “box™ in a two-dimensional plot. The solution
is then completely parametrized by the locations of the edges of this box, at least in the uncharged case. We
also briefly analyze other possible domain structures—in the shape of a triangle and trapezoid—that might
describe physically interesting space-times within the anti-de Sitter C metric.

DO 10103 PhysBEevD 91 064014

1. INTRODUCTION

The C metric is a static solution to the vacuum Einstein
field equations, whose history dates back to 1918 when it
was discovered by Levi-Civita [1]. It was subsequently
rediscovered by various other authors in the early 1960s
[2-4]; in particular, it was Ehlers and Kundt (4] who, in the
process of classilying degenerate stalic vacuum solutions,
gave it the “C” designation that it is known by today.
However, its interpretation remained obscure until 1970,
when Kinnersley and Walker (5] showed that the C metric
actually describes a Schwarzschild black hole undergoing
uniform acceleration. It was also these two authors who
introduced the well-known form of the C metric that
would remain the de fucto standard form for the three
decades or so.

To see how Kinnersley and Walker obtained their form of
the € metric, we need to start with the slightly more general
form used by Ehlers and Kundt [4]:

1 . dy?  di?
ds? = ——— | F{y)d? = — 4+ —— + G(x)dg?|.
== = [0~y togg TN

(n

where the structure functions G{x) and F(y) are cubic

polynomials in x and y, respectively, satisfying the condition
F(x) = G(x). 2

Thus, the two polynomials share the same coefficients. It
would appear that this solution has four parameters, which
can be taken to be the coefficients of G(x), say. However,
two of them are actually unphysical, and can be gauged
away by a suitable coordinate transformation. Kinnersley
and Walker considered the following affine coordinate
transformation:

PACS numbers: 04.70.Bw

X =Aggx+ ey, ¥ =Acyy + €1,

r=cyr. ¢ =cop. (3)
under which the metric (1) gains an overall factor but
otherwise retains the same general form:

L I 1_‘]-“'_2 .'1‘5, - 2
452 = drr o [P0 ~ s+ gy G-

4)

Note that the structure functions G{x) and F(y} are still
cubic polynomials satisfying (2), although with new coef-
ficients depending on A, ¢y, and ¢,. Kinnersley and Walker
then used the coordinate freedom in (3) to set G{x) to be
‘ Glx) = 1 —x = 2mAx*. [ (5)
In particular, the linear coefficient has been set to zero.
The parameters m and A are related to the mass and
acceleration of the black hole, respectively. In the limit
A = 0, the usual Schwarzschild metric with mass parameter
m can be recovered from this form of the € metric. On the
other hand, in the limit m — 0, the usual Rindler space
metric with acceleration parameter A can be recovered.
A major disadvantage of the Kinnersley-Walker form of
the C metric is that the roots of the structure function (5) are

T

¢ ome to write down in term the parameters m
and A. Nevertheless, knowledge of these roots is important,
since they encode the locations of the axes and horizons
in the space-time. Almost any study of the geometnical
properties of the space-time will involve these roots and
would be very complicated as a result. Even if the roots
were not explicitly expressed in terms of m and A, one
would need to have a handle on their dependence on these
parameters.

YU CHEN, YEN-KHENG LIM, AND EDWARD TEQ

In 2003, Hong and Teo [6] propesed a new form of the C
metric that would alleviate this difficulty. Instead of using
the coordinate freedom in (3} to set the linear coelficient of
Gix) to zero, they used this freedom to set it to the value

2mA. As aresult, G{x) can be put in the factorized form;

() = (1= (1 +2mAz). [ (6)

In this form, the roots of the structure functions are obvious
to read off: the two axes of the space-time are located at
x = %1, while the acceleration and black-hole horizons
are located at y = —1, — 51+, respectively. These simple
expressions lead to potentially drastic simplifications when
analyzing the properties of the C metric, as demonstrated
in Ref. [6].

The new form (6) is related 1o the previous one (5) by a
coordinate transformation and redefinition of parameters.
In particular, s and A still retain their interpretations as
the_mass and acceleration parameters of the black hole.
respectively. Again, the Schwarzschild metric can be
recovered in the limit A — 0. while the Rindler space
metric can be recovered in the limit m — 0. However, we
emphasize that in the general case m, A # 0, the parameters
appearing in (6) are inequivalent to those appearing in (3).

The € metric can be strughtforwardly extended to
include charge, by adding a quartic term to the structure
functions. In the Kinnersley-Walker form, the metric is still
given by (4), but the structure function (5) is generalized to

Gx) = 1 -2 = 2mAs® - gAY, (7)
where g is the charge parameter of the black hole. Being a
quartic polynomial, the roots of G{x) are now even more
cumbersome 0 wrle down than in the vacuum case,
Fortunately, the factorized form (6) can be extended to
the charged case. It was shown in Ref. [6] that, by a
coordinate transformation and redefinition of parameters,
(7) can be written as

L6 = (1= +ran(+ran,| @

where ro = m & \,f';j—_qz are the locations of the hori-
zons in the usual form of the Reissner-Nordstrém metric. Tn
this form, the roots of G{x] are trivial to read off: the two
axes of the space-time are again located at x = £1, while

PHYSICAL REVIEW D 91, 064014 (2015)
Gix) =1 —x* =2mAx’ — (@ + g")A%%,  (9)

where a is the rotation parameter of the black hole.
In Ref. [7], Hong and Teo showed that G(x) can again
be written in the factorized form (8). but with
rp=m+ v‘?— a’ — g°. The latter are just the locations
of the honizons in_the Bover-Lindquist form of the Kerr-

Newman metric. However, as Hong and Teo pointed out,

one key difference in this case is that this new form of the
rotating C metric is nof related to the traditional form (9) by

a coordinate transformation. It turns out that the traditional

form_of the rotating € metric possesses so-called Dirac-
dogs not. To avoid such singularities, the structure func-
tions necessarily take the factorized form (8),

A natural question at this stage is whether this new form
of the (static, charged) C metric can be extended to include
acosmological constant A. The C metric with cosmological

constant is traditionally written in the form (4), with the
structure functions

i G(x) = 1 —x% — 2mAx’ — g2A%xY, |

1
F(y) = (I & ﬁ) — ¥ = 2mAy* = @EaAdyt, | (10)
\ 7 |

where #? = -3/A. Note that G(x) has exactly the same
form as in (7), but that F(x) now differs from G(x) by a
constant term:

Flx) = 6(0) ~ 7. (1)

roots of G(x) and those of F{y]. In particular, a factorized

form for G{x) does not lead to one for F(v), or vice versa.

In Ref. [7], a tentative proposal was made to write G(x) in
the factorized form (8), at the expense of leaving F(y)
unfactorized. However, an unsatisfactory consequence is
that the r. appearing in G{x} have no relation to the
locations of the horizons of the Kerr-Newman-de Sitter/
anti-de Sitter black hole. This is perhaps not unexpected.
since the locations of the horizons are encoded by the roots
of F{v}, which as mentioned are now not the same as those
of G(x).

In this paper, we would like to find a new form of the C

metric_ with cosmological constant that retains the nice
features of the factorized form of Ref. [6]. To this end,

the acceleration and two black-hole horizons are located at
y = -1, -1, respectively.

" The (charged) C métric can also be extended to include
rotation. In this case, the metric (4) has to be replaced by a
more complicated stationary form—not reproduced here—
which nevertheless still depends on two structure functions
G(x) and F(y) satisfying (2). In the Kinnersley-Walker
form, G(x) is given by

recall that two of the roots of G(x) are physically
significant, in that they represent the two axes in the
space-time. The coordinate range for x lies between these
two roots. On the other hand, two of the roots of F(y) are
physically significant, in that they represent the acceler-
ation and (outer) black-hole horizons. The coordinate range
for y lies between these two roots. It is therefore natural to

take these two roots of G(x) and two roots of F'ly) as

Hon
|
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Classical and Quantum Gravity Exact Solutions Policy:

In the field of classical relativity, the discovery of a new exact solution does not justify publication
simply for its own sake.

Justification for publishing a new solution would be provided by showing for example that
- it has an interesting physical application or

- unusual geometrical properties, or

- that it illustrates an important mathematical point.

The onus is on the author to provide convincing evidence that the solution is in fact new.

Conclusion: Jifi BiCak’'s Review is great resource for such considerations.



Supplementary conclusion:
When asked to give a seminar, do not reply:
“I do no science these days, | only do some editing.”

It won't help.



Thank you !



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

