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Spherical orbits

y M] X [M]

Figure 1. Example of a set of spherical orbits launched at the radius r = 5 from the equatorial plane of a Kerr black hole
(a = 0.8) differing solely by the value of Carter constant @ which specifies the initial value of ps = Q2. In particular, we
compare the trajectories with Q = 0 (black circular orbit), @ =1 (red), QV/?=2 (green) and QY?* =3 (blue).
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Polar orbits

0
x[M]

N

N/,

XM

yMI

o
&
&
)
<
N
S
&
=
@
o
=
2
o
©
(%]
<<
2}
3
=
3}
151
N
(6]




N
History

Kerr, R. P. (1963), Gravitational Field of a Spinning Mass as an Example of Algebraically
Special Metrics, Physical Review Letters, 11, 237.

Newman, E. T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., & Torrence, R. (1965),
Metric of a Rotating, Charged Mass, Journal of Mathematical Physics, 6, 918.

Carter, B. (1968), Global Structure of the Kerr Family of Gravitational Fields, Physical
Review, 174, 1559.

Wilkins, D. C. (1972), Bound Geodesics in the Kerr Metric, Physical Review D, 5, 814.
Bardeen, J. M., Press, W. H., & Teukolsky, S. A. (1972), Rotating Black Holes: Locally
Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation, The
Astrophysical Journal, 178, 347.

Goldstein, H. (1974), Numerical calculation of bound geodesics in the Kerr metric,
Zeitschrift fur Physik, 271, 275.

Dymnikova, I. G. (1986), REVIEWS OF TOPICAL PROBLEMS: Motion of particles and
photons in the gravitational field of a rotating body (In memory of Viadimir Afanas’evich
Ruban), Soviet Physics Uspekhi, 29, 215.

Shakura, N. . (1987), Geodesics in a Kerr Metric, Soviet Astronomy Letters, 13, 99.

Rana, P, & Mangalam, A. (2019), Astrophysically relevant bound trajectories around a Kerr
black hole, Classical and Quantum Gravity, 36, 045009.

Teo, E. (2021), Spherical orbits around a Kerr black hole, General Relativity and
Gravitation, 53, 10.

O. Kopéacek (Astronomical Institute) Spherical orbits in Kerr spacetime Czech LISA - September 2024  4/22



O. Kopéacek (Asti

350 JAMES M. BARDEEN ET AL. Vol. 178

components of the particle’s 4-momentum at some instant, these conserved quantities

= —p; = total energy,

L = p, = component of angular momentum parallel to symmetry axis ,

Q = pi® + cos? 0[a*(u® — pi) + p?lsin® 6] . @8
Hete i the rest mass ofthe partice Gu = O for photons), which i a trval fourth
constant of the motion. Note that Q = 0 is a necessary and sufficient condition for
otion initially in the equatorial plane o remain in the equatorial plane A‘nr all tie.
Any orbit which crosses the equatorial plane has O > 0. Wher
the square of the total angular momentum. By solving cquation (2.9) &k 08
and thence the p*'s, one obtains equations governing the orbital trajectory,

- sy, @9
(Vo2 (2.9b)

2% - _(@E -~ Lsin ) + aT]a, (29
2o st~ 1) + (¢ + AT (294

Hete s related o the partile’s prope time by A = rf, andis an affine parameter
in the case u— 0, and

T=E(* +d) - La,

V=17 - Alpr® + (L — aE)? + 01,

Vo= Q — cos? Oa*(u* — E?) + L2sin® 0] . (2.10)
Without loss of generality one is free to take u = 1 for particles and u = 0 for photons,
in equations (2). (2.9), (.10). (For partices this merely renormaizes £, L and

it rest mass* basis.) ¥, and V, are “effective potentials” governing

particlé motions in r and 8. Notice that ¥, is 4 function of 1 only, ¥, 1 a function of
5 only, and consequently equations (2.9) and (2.9b) form a decoupled pair. Also, it
is not difficult to show (Wilkins 1972) that if EJu < 1 the orbit is bound (does not
reach r = co), while all orbits with £/« > 1 are unbound except for a * measure-zero™
set of unstable orbits.

e single most mportant class of orbits are the circular obits i the cquatorial
plane. For a circular orbit at some radius r, drjd\ must vanish both instantancously
and at all subsequent times (orbit at a perpetual turning point). Equation (2.9a) then
gives the conditions

Vi =0, V() =0. @11

‘These equations can be solved simultaneously for E and L to give

o2 — 2Mri? & aM'?
Elk = o = 337 2ah T @1
aMi 4 o) o

Hr T 20T
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In these and all subsequent formulae, the upper sign refers to direct orbits (i.c.,
corotating with L > 0), while the lower sign refers to retrograde orbits (counter-
rotating with L < 0). For an extreme-rotating black hole, a = M, equations (2.12)
and (2.13) simplify somewhat,

rt MY

Eln W

fora=M; (.14

r

S i R
e = 2 gy

The coordinate angular velocity of a circular orbit is
Q= dpldt = + M2 + aM™?) . @.16)

Circular orbits do not exist for all values of r. The denominator of equations (2.12)
and (2.13) is real only if

o2~ 3MrY2 £ 2aM > 0. @17

‘The limiting case of equality gives an orbit with infinite energy per unit rest mass,

i.e., a photon orbit. This photon orbit is the innermost boundary of the circular orbits
for particles; it occurs at the root of (2.

= rn = 2M{1 + cos [3 cost (Fa/M)]}. @18)
For a = 0, ry, = 3M, while for a = M, r,,, = M (direct) or 4M (retrograde).

For r > ryn not all circular orbits are bound. An unbound circular orbit is one
with £l > T Given an infnitesimal outward perturbation, a partce in such an orbit
will escape to infinity asymptotically hyperbolic trajectory. The unbound
Gircular orbits are circular in seomety but hyperbolic in energetis, aud they ate al
unstable. Bound circular orbits exist for 7 > £y, Where rpy is the radius of the
marginaily bound (+parabolic™ cirular orbic with Elu = 1

Py = 2M F a + IMYAM F a2, (219
Note also that £,y is the minimum perihelion of all parabolic (EJu = 1) orbits. In
astrophysical problems, particle infall from infinity is very nearly parabolic, since the
velocities of matter at infinity satisfy v < ¢. Any parabolic trajectory which penetrates
107 < ryy, must plunge directly i mlo the black hole. For a = 0.y = 43 fora = M,
Fay = M (direct) or 5.83M (retr
Fven the bound circular orbits ar¢ not allstable. Stability requires that ¥,'(r) < 0,
which yields the three equivalent conditions

1= (Elup® = Mjr),
2 — 6Mr + 8aM'ri? — 3a® 2 0,

fora= M. @15

F2 e, (2.20)
where r,,, is the radius of the marginally stable orbit,
s = M3+ Z5 7 [ — Z)G + Z, + 223,
=1+ (1 — @MYl + a/M)'? + (1 — a|M)**],
Z,= (3aM? + Z,2)e, @21)
For a =0, rpy = 6M; for a = M, rp, = M (direct) or 9M (retrograde). Figure 1
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ISCO of charged particles in Kerr-Newman spacetime

@ Schroven, K., & Grunau, S. (2021), Innermost stable circular orbit of charged particles in
Reissner-Nordstrom, Kerr-Newman, and Kerr-Sen spacetimes, Physical Review D, 103,
024016.

“The radius of the ISCO increases with an increasing particle-black hole charge product
|qQ) in the case of attractive Coulomb interaction qQ < 0. For the repulsive Coulomb
interaction, the ISCO radius first decreases to a minimum and then increases again, until it
diverges as the charge product approaches one.”

@ Hackmann, E., & Xu, H. (2013), Charged particle motion in Kerr-Newmann space-times,
Physical Review D, 87, 124030.
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Spherical orbits parametrized by inclination angle

Energy and angular momentum of the spherical orbits may be expressed explicitly as a function
of radius, spin, and latitudinal turning point 6, (Shakura, 1987):

17 i aq\*/sinH*
E= 3r 2aqg, 2 12’
(1 :I: \[smﬁ*—}— s, ,cos 0*)
:I:q* \J;fz sin 0y — 22 sin? 6,
= 3r 2aq. _: a2 2 12’
(1 — f:i: z*\ﬁsmﬁ*—&- 57 cos 9*>

where ¥, = r2 4+ a2 cos? 0, and g, = (r?2 — & cos? 6, )'/2. Upper signs correspond to
co-rotating (direct) orbits while the lower signs are valid for counter-rotating orbits. With the

inclination 6, = 7/2 the above expressions reduce to familiar formulas for circular (Keplerian)
orbits in the equatorial plane.
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Spherical orbits parametrized by Carter constant

Alternatively to the parameterization by the value of the turning point 6., it is also possible to
parameterize the integrals of motion E and L by the Carter constant Q (Teo, 2021):

r3(r—2)fa(aoth/7)
r2\/r3(r—3)—2a(aQ:F\/¥>’

2ard + (12 + &) (aOJF ﬁ)

r2\/r3(r—3) —2a(aO$\/7)7

where T = r5 — Q(r — 3)r® + 22Q2. Submitting Q = 0, we may again verify that the above

formulas reduce to expressions for circular orbits.
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Properties of spherical orbits
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Figure 3. Square root of the Carter constant of spherical orbits at r = 10 as a function of angular momentum L for several
values of spin. In the right panel, we zoom the section of the left plot around maximal values.
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ISSO and MBSO

For spherical orbits, the radius r = rms of Innermost Stable Spherical Orbit (ISSO), and the

related radius r = r,,;, of the Marginally Bound Spherical Orbit (MBSO) are given implicitly by the
following algebraic relations (Rana, 2019):

ree —12r8 — 6&2rhs + 3610 + 822 QrS, — 284218, — 2422Qrd, 4 9a*rS,, — 24a* Qi
+482°Qrt. +16a*Q%r3, — 8a*Qr3 s — 48a* Q%r2, + 48a*Q%rms — 168°Q% = 0,
and
8 — 288, + 168, +222Qr3, — 8a%r3, — 622 Qre, + a'rt, —2a*Qrd,
+8a20rmb +a*@?r2, — 2a*Qr?, - 2a ermb +a'@®* =0.
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Figure 4. Locations of the innermost stable spherical orbits (left panel) and marginally bound spherical orbits (right panel)
with different values of the Carter constant and spin. On the vertical axis, parameter a|M] = ga is shown, where a is the Kerr
spin parameter, for which a > 0 is assumed throughout the paper, and ¢ = £1 is a switch that distinguishes prograde vs.
retrograde motion. Positive values (o = 1) correspond to orbits co-rotating with the black hole, while negative values (o = —1)
are for the counter-rotating orbits. These graphs generalize the well-known dependence of the equatorial ISCO radius to the
case of orbits inclined with respect to the equatorial plane.
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Locations of the innermost stable spherical orbits (left panel) and marginally bound spherical orbits (right panel)

with respect to the inclination @, for different values of the spin parameter. The meaning of 0, is the angular distance of the
th or nadir, respectively (see the main text for further details). Dashed lines correspond to
, their lower edges (0, = m/2)

e

Figure 5.

latitudinal turning point from the
the counter-rotating spherical orbits. We notice that the vertical axes of the plots are inverted,
correspond to circular orbits in the equatorial plane, while polar orbits with 6, = 0 are found on the upper edges.
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ISPO and MBPO
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Figure 8. Left pancl: radii of marginally bound polar orbits (MBPO). Right pancl:
(ISPO).

radii of innermost stable polar orbits
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Stable spherical orbits above ISSO

6

5
x[M] yM] -5 X[M]
Figure 9. Example of a stable spherical orbit above ISSO. The left pancl shows the cffective potential Eq. (6) of the particle
with angular momentum given by Eq. (14) while the equipotential curve of corresponding energy given by Eq. (13) is marked by
the dashed black line. The solid black line marks the horizon of the black hole. The blue curve shows the projected trajectory.
In the right pancl, the same trajectory is shown in three dimensions with the horizon marked by the grey sphere. Following

parameters were employed: ro = 6.5, Q'/* = 0.75 and a = 0.5.
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Unstable spherical orbits between MBSO and ISSO

XM yiM) & (M)

Figure 10, Example of an unstable plunging spherical orbit launched below 1SSO. Following parameters were employed: ro = 4,
Q' = 0.75 and a = 0.5.

&

x[M] yiM]
Figure 11. Example of an unstable spherical orbit launched below 1SS0 which evolves into quasiperiodic radially bounded orbit

due to numerical perturbation resulting from integration errors. Following parameters were employed: 5 = 3.6, Q'/? = (.75
and a = 0.5
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Dynamics between MBSO and ISSO

N
A\ *

-0.04

B, M

42 4.4 46

52 54 56

4.8 5
T, M)

Figure 16. Left panel: a sketch of the dynamics in the neighborhood of a saddle-type unstable hyperbolic fixed point in a
two-dimensional dynamical system with phase-space coordinates (g, p) = (0,0). Separatrix (red) and flow lines (blue) in different
phase-space regions are shown. Right panel: example of actual dynamics near an unstable spherical orbit between MBSO and
1SS0 radii with parameters ro = 4.1, Q'/* = 3 and a = 0.9 (light-blue asterisk). The blue region corresponds to plunging
orbits, red region consists of radially bounded quasiperiodic orbits. Poincaré surface of section (taken at 6 = /2 for ¢ > 0)

with canonical coordinates (r, p,-) of several quasiperiodic trajectories within the bound region differing in initial radii is shown
with black color.
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Dynamics between MBSO and ISSO
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Figure 17. Effect of the Carter constant on the dynamics near unstable spherical orbits (marked by light-blue asterisks in the
plots) located between MBSO and 1SSO radii. The upper row shows the co-rotating orbits near the unstable orbit at ro = 3.24
with spin @ = 0.7, while the bottom row reveals the counter-rotating orbits around unstable orbit ro = 6 with the spin a = 0.8.
The range of p, values (vertical axis) is different in each row in order to make the effect of Q% more apparent.
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Dynamics between MBSO and ISSO
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Figure 18. Effect of the spin parametel
located between MBSO and ISSO radii. The upper row shows the co-rotating orbits near the unstable orbit at ro = 4.1, with
Q' = 3, while the bottom row reveals the counter-rotating orbits around the unstable orbit at ro = 5.9 with Q"% = 1.8.

on the dynamics near unstable spherical orbits (marked by blue asterisks in the plots)
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Unstable spherical orbits below MBSO

4
x[M) x(M]

Figure 12. Examples of unstable spherical trajoctorics below MBSO. Upper row: escaping particle launched from ro = 2.8.
Bottom row: plunging particle launched from 7y = 2.6. Same parameters as in Figs. 10 and 11 are used.
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Dynamics below MBSO
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Figure 19. The cffect of the Carter constant on the dynamics near unstable spherical orbits (marked by blue asterisks in the
plots) that are located below MBSO radius. The upper row shows co-rotating orbits near the unstable orbit at ro — 1.7 for the
the counter-rotating orbits around the unstable orbit ro = 4.5 with the spin @ = 0.6.
Note that the range of p, values (vertical axis) is different in each row.

spin a = 0.9. The bottom row reve:
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Conclusions

@ Spherical orbits of massive particles in Kerr spacetime are a special class of timelike
geodesics defined by constant radii. At given radii, spherical orbits are specified by two
parameters. We used parametrizations by spin and Carter constant, or by spin and
turning angle 6..

@ We discussed the radii of the Innermost Stable Spherical Orbit (ISSO) and the
Marginally Bound Spherical Orbit (MBSO). For co-rotating orbits, both ISSO and
MBSO radii are gradually shifted to higher radii compared to ISCO and MBCO of the
corresponding circular orbit as the Carter constant increases. For counter-rotating
spherical orbits, ISSO and MBSO are always smaller than those of circular orbits and
they decrease as the Carter constant grows.

@ Spherical orbits below ISSO become unstable, and the destiny of a particle, i.e., whether
it plunges to the black hole, stabilizes on a quasiperiodic orbit, or escapes (from below
MBSO), depends primarily on the phase-space direction of the perturbation.

@ Assuming that the perturbation has a random direction in the (r, pr) plane, we conclude
that for particles between MBSO and ISSO, the spin parameter decreases the
probability of the stabilization for co-rotating orbits while it increases this probability
for counter-rotating orbits. The Carter constant has an opposite role: it contributes to
the stabilization of co-rotating orbits while it makes counter-rotating orbits more
prone to plunge.

@ Below the MBSO radii, the nature of the instability changes to unstable node for which
the probability of plunge or escape does not change with these parameters since the
separatrix remains a straight line that only slightly rotates as the spin or Carter constant
increases.
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Spherical photon orbits in Kerr spacetime

@ Teo, E. (2003), Spherical Photon Orbits Around a Kerr Black Hole, General
Relativity and Gravitation, 35, 1909.

@ Always unstable against radial perturbations.

@ Unlike massive particles, spherical photon orbits are obtained as a
one-parameter family of orbits, i.e., for a given black hole spin a the orbit is fully
defined by radius r.

@ For null geodesics described by integrals E, L and Q, only the two ratios
¢ = L/E and n = Q/E? are really independent:
rP—3r’+ &r+a P (rP—6rf +9r —4a)
ar—1 "7 2(r— 1y
@ Only allowed in the range of radii r; < r < r,, where
r2 =2{1+ cos £ arccos (¥a)| } are the radii of unstable circular photon orbits
in the equatorial plane with » = 0. Radius ry corresponds to a co-rotating orbit

while at r. we get a counter-rotating circular orbit. The radial range between ry
and r; is divided by an intermediate radius

_2 I
rr=1+2y/1- ? cos <; arccos (1(1"’3:))3> of the polar orbit with ¢ = 0.
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Off-equatorial orbits

P "0
> a1
P oo
A T

@ Timelike orbits of constant radial and latitudinal coordinates located outside the equatorial
plane (nonequatorial circular orbits).

@ No stable off-equatorial orbits of charged particles are found outside the outer horizon of
the Kerr-Newman BH.

@ Allowed for charged particles around (weakly) magnetized Kerr black hole (Wald’s solution)
or massive magnetic dipole (Bonnor’s solution); non-integrable systems with chaotic
dynamics.

@ Kopacek, O., Karas, V., Kovar, J., & Stuchlik, Z. (2010), Transition from Regular to Chaotic
Circulation in Magnetized Coronae near Compact Objects, The Astrophysical Journal, 722,
1240.

@ Kovér, J., Kopacek, O., Karas, V., & Kojima, Y. (2013), Regular and chaotic orbits near a
massive magnetic dipole, Classical and Quantum Gravity, 30, 025010.
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Numerical analysis of unstable dynamics

Q'-0.003
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Numerical analysis of unstable dynamics
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