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Spherical orbits
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Polar orbits
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ISCO of charged particles in Kerr-Newman spacetime

Schroven, K., & Grunau, S. (2021), Innermost stable circular orbit of charged particles in
Reissner-Nordström, Kerr-Newman, and Kerr-Sen spacetimes, Physical Review D, 103,
024016.
“The radius of the ISCO increases with an increasing particle-black hole charge product
|qQ| in the case of attractive Coulomb interaction qQ < 0. For the repulsive Coulomb
interaction, the ISCO radius first decreases to a minimum and then increases again, until it
diverges as the charge product approaches one.”
Hackmann, E., & Xu, H. (2013), Charged particle motion in Kerr-Newmann space-times,
Physical Review D, 87, 124030.
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Spherical orbits parametrized by inclination angle

Energy and angular momentum of the spherical orbits may be expressed explicitly as a function
of radius, spin, and latitudinal turning point θ⋆ (Shakura, 1987):
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where Σ⋆ = r2 + a2 cos2 θ⋆ and q⋆ = (r2 − a2 cos2 θ⋆)1/2. Upper signs correspond to

co-rotating (direct) orbits while the lower signs are valid for counter-rotating orbits. With the

inclination θ⋆ = π/2 the above expressions reduce to familiar formulas for circular (Keplerian)

orbits in the equatorial plane.
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Spherical orbits parametrized by Carter constant

Alternatively to the parameterization by the value of the turning point θ⋆, it is also possible to
parameterize the integrals of motion E and L by the Carter constant Q (Teo, 2021):
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where Υ = r5 − Q(r − 3)r3 + a2Q2. Submitting Q = 0, we may again verify that the above

formulas reduce to expressions for circular orbits.
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Properties of spherical orbits
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ISSO and MBSO

For spherical orbits, the radius r = rms of Innermost Stable Spherical Orbit (ISSO), and the
related radius r = rmb of the Marginally Bound Spherical Orbit (MBSO) are given implicitly by the
following algebraic relations (Rana, 2019):
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ISPO and MBPO
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Stable spherical orbits above ISSO
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Unstable spherical orbits between MBSO and ISSO
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Dynamics between MBSO and ISSO
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Dynamics between MBSO and ISSO

O. Kopáček (Astronomical Institute) Spherical orbits in Kerr spacetime Czech LISA - September 2024 18 / 22



Dynamics between MBSO and ISSO
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Unstable spherical orbits below MBSO
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Dynamics below MBSO
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Conclusions
Spherical orbits of massive particles in Kerr spacetime are a special class of timelike
geodesics defined by constant radii. At given radii, spherical orbits are specified by two
parameters. We used parametrizations by spin and Carter constant, or by spin and
turning angle θ⋆.
We discussed the radii of the Innermost Stable Spherical Orbit (ISSO) and the
Marginally Bound Spherical Orbit (MBSO). For co-rotating orbits, both ISSO and
MBSO radii are gradually shifted to higher radii compared to ISCO and MBCO of the
corresponding circular orbit as the Carter constant increases. For counter-rotating
spherical orbits, ISSO and MBSO are always smaller than those of circular orbits and
they decrease as the Carter constant grows.
Spherical orbits below ISSO become unstable, and the destiny of a particle, i.e., whether
it plunges to the black hole, stabilizes on a quasiperiodic orbit, or escapes (from below
MBSO), depends primarily on the phase-space direction of the perturbation.
Assuming that the perturbation has a random direction in the (r , pr ) plane, we conclude
that for particles between MBSO and ISSO, the spin parameter decreases the
probability of the stabilization for co-rotating orbits while it increases this probability
for counter-rotating orbits. The Carter constant has an opposite role: it contributes to
the stabilization of co-rotating orbits while it makes counter-rotating orbits more
prone to plunge.
Below the MBSO radii, the nature of the instability changes to unstable node for which
the probability of plunge or escape does not change with these parameters since the
separatrix remains a straight line that only slightly rotates as the spin or Carter constant
increases.

O. Kopáček (Astronomical Institute) Spherical orbits in Kerr spacetime Czech LISA - September 2024 22 / 22



Spherical photon orbits in Kerr spacetime
Teo, E. (2003), Spherical Photon Orbits Around a Kerr Black Hole, General
Relativity and Gravitation, 35, 1909.
Always unstable against radial perturbations.
Unlike massive particles, spherical photon orbits are obtained as a
one-parameter family of orbits, i.e., for a given black hole spin a the orbit is fully
defined by radius r .
For null geodesics described by integrals E , L and Q, only the two ratios
ϕ ≡ L/E and η ≡ Q/E2 are really independent:
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of the polar orbit with ϕ = 0.
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Off-equatorial orbits

Timelike orbits of constant radial and latitudinal coordinates located outside the equatorial
plane (nonequatorial circular orbits).
No stable off-equatorial orbits of charged particles are found outside the outer horizon of
the Kerr-Newman BH.
Allowed for charged particles around (weakly) magnetized Kerr black hole (Wald’s solution)
or massive magnetic dipole (Bonnor’s solution); non-integrable systems with chaotic
dynamics.
Kopáček, O., Karas, V., Kovář, J., & Stuchlík, Z. (2010), Transition from Regular to Chaotic
Circulation in Magnetized Coronae near Compact Objects, The Astrophysical Journal, 722,
1240.
Kovář, J., Kopáček, O., Karas, V., & Kojima, Y. (2013), Regular and chaotic orbits near a
massive magnetic dipole, Classical and Quantum Gravity, 30, 025010.
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Numerical analysis of unstable dynamics
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