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Abstract and Summary

During the ringdown phase of a gravitational signal emitted by a
black hole, the least damped quasinormal frequency dominates. If
modifications to Einstein’s theory induce noticeable deformations
of the black-hole geometry only near the event horizon, the
fundamental mode remains largely unaffected. However, even a
small change near the event horizon can significantly impact the
first few overtones, providing a means to probe the geometry of
the event horizon. Overtones are stable against small
deformations of spacetime at a distance from the black hole,
allowing the event horizon to be distinguished from the
surrounding environment. In contrast to echoes, overtones make a
much larger energy contribution. These findings open up new
avenues for future observations.
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The fundamental mode
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Figure: Rather symbolic effective potential for a Schwarzschild black hole;
M = 1.
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Small deformations near the event horizon I

The metric of a spherically symmetric black hole can be written in
the following general form,

ds2 = −N2(r)dt2 +
B2(r)

N2(r)
dr2 + r2(dθ2 + sin2 θdφ2), (1)

where r0 is the event horizon, so that N(r0) = 0. Following [L.
Rezzolla, A. Zhidenko Phys.Rev.D 90 (2014) 8, 084009], we will use
the new dimensionless variable x ≡ 1− r0/r, so that x = 0
corresponds to the event horizon, while x = 1 corresponds to
spatial infinity. We rewrite the metric function N via the expression
N2 = xA(x), where A(x) > 0 for 0 ≤ x ≤ 1. Using the new parameters
ǫ, a0, and b0, the functions A and B can be written as

A(x) = 1− ǫ(1− x) + (a0 − ǫ)(1− x)2 + Ã(x)(1 − x)3 ,

B(x) = 1+ b0(1− x) + B̃(x)(1 − x)2 . (2)

Here the coefficient ǫmeasures the deviation of r0 from the
Schwarzschild radius 2M: ǫ = (2M− r0)/r0.
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Small deformations near the event horizon II

The coefficients a0 and b0 can be considered as combinations of
the post-Newtonian (PN) parameters, a0 = (β − γ)(1+ ǫ)2/2,
b0 = (γ − 1)(1+ ǫ)/2. Current observational constraints on the PN
parameters imply a0 ∼ b0 ∼ 10−4, so that we can safely neglect
them. The functions Ã and B̃ are introduced through infinite
continued fraction in order to describe the metric near the horizon
(i.e., for x ≃ 0),

Ã(x) =
a1

1+ a2x

1+
a3x

1+...

, B̃(x) =
b1

1+ b2x

1+
b3x

1+...

, (3)

where a1,a2, . . . and b1,b2, . . . are dimensionless constants to be
constrained from observations of phenomena which are localized
near the event horizon. At the horizon only the first term in each of
the continued fractions survives, Ã(0) = a1, B̃(0) = b1, which
implies that near the horizon only the lower-order terms of the
expansions are essential.
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Small deformations near the event horizon III

When all the coefficients ai, bi and ǫ vanish, we have the
Schwarzschild solution, so that one can consider the above
parametrization as a general deformation of the Schwarzschild
geometry. Then, we would like to understand which kind of
deformations are responsible for the outburst of overtones. For
this purpose, following [R. K, A. Zhidenko Phys.Rev.D 101 (2020) 12,
124004], we will distinguish the Schwarzschild-like nonmoderate
black holes, whose metric functions are close to the Schwarzschild
one everywhere except a small region near the event horizon in
which it is strongly different. It is believed that this kind of black
holes can be Schwarzschild mimickers, so that their ringdown
profile and shadows are practically indistinguishable from those for
the Schwarzschild ones. Moderate black holes are characterized by
relatively slow change of the metric functions in the near horizon
zone.
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Small deformations near the event horizon IV

Overall, here we will compare the Schwarzschild black hole with the
following four cases:
a) Nonmoderate Schwarzschild-like black hole with the
Schwarzschild values of the Hawking temperature and radius of the
event horizon (black hole 1).
b) Nonmoderate Schwarzschild-like black hole with considerably
different (from the Schwarzschild one) Hawking temperature, but
the same radius of the event horizon (black hole 2).
c) Moderate black hole with a slightly different radius, but the same
mass and post-Newtonian behavior (black hole 3).
Thus, we study the moderate and nonmoderate near-horizon
deformations of the Schwarzschild geometry.
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QNMs I

After the separation of variables in the general covariant equations
for the scalar and electromagnetic perturbations they can be
reduced to the Schrödinger-like form,

∂2Ψ

∂t2
−

∂2Ψ

∂r2∗
+ V(r)Ψ = 0, (4)

where the “tortoise coordinate” r∗ is defined by the relation
dr∗ = B(r)N

−2(r)dr. The effective potentials for the scalar and
electromagnetic fields are

V(r) = N2(r)
ℓ(ℓ+ 1)

r2
+
1− s

2r

d

dr

N4(r)

B2(r)
,

where ℓ = 1,2, . . . are the multipole numbers and s = 0 (s = 1)
corresponds to the scalar (electromagnetic) field, respectively. The
effective potential for the electromagnetic field has the form of the
positive definite potential barrier, while this is not always so for a
scalar field.
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QNMs II

Quasinormal modes ωn are frequencies corresponding to solutions
of the master wave equation (4) with the requirement of the purely
outgoing waves at infinity and at the event horizon,

Ψ ∝ e−iωt±iωr∗ , r∗ → ±∞.

In order to find QNMs we will use two methods: the time-domain
integration and the Frobenius method.
In the time domain, we integrate the wavelike equation (4) in terms
of the light-cone variables u = t − r∗ and v = t + r∗. using the
discretization scheme of [C. Gundlach, R. Price, J. Pullin, Phys.Rev.D
49 (1994) 883-889] and, further, extracting QNMs with the Prony
method.
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QNMs III

In the frequency domain, after separating the time and radial
coordinate, Ψ(t, r) = e−iωtR(r), we use the Frobenius method [E.
Leaver, Proc.Roy.Soc.Lond.A 402 (1985) 285-298]. Namely, we
express the function R, written with respect to the compact
coordinate x, as a product of the factor, which diverges at the
singular points x = 0 and x = 1 satisfying the QN boundary
conditions, and the Frobenius series expansion

R(x) = x−iω/2κgeiωrxλ
∞
∑

m=0

cmx
m,

where κg > 0 and λ are determined by substituting the series into
(4) and expanding, respectively, at x = 0 and x = 1.
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QNMs IV

By expanding the wavelike equation at x = 0, we find the
recurrence relation for the coefficients cm, which can be
numerically reduced to the three-terms relation via Gaussian
eliminations. Finally, we obtain an equation with the infinite
continued fraction with respect to ω. In order to calculate the
infinite continued fraction we use the Nollert improvement [Nollert,
Phys.Rev.D 47 (1993) 5253-5258]. When the singular points of the
wavelike equation appear within the unit circle |x| < 1, we employ a
sequence of positive real midpoints as described in [Rostworowski,
Acta Phys.Polon.B 38 (2007) 81-89].
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QNMs V
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Figure: Relative deviation of first 7 qnms from the SBH (ǫ = 0, a1 = b1 = 0,

T
(0)
H = 1/4π) for the s = 0 (left) and s = 1 (right) perturbations ℓ = 1 (▽)
end ℓ = 2 (△). For BH 1: ǫ = 0, a1 = 0.0001, a2 = −1000, a3 = 1001, a4 = 0,

b1 = 0 (TH = 1.0001T
(0)
H , red), BH 2: a1 = 0.5, a2 = 100, a3 = 0, b1 = 0

(TH = 1.5T
(0)
H , magenta), BH 3: ǫ = −0.01 (2M = 1, a1 = b1 = 0, blue).
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QNMs VI
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Figure: Left panel: Effective potentials (s = 0, ℓ = 1, r0 = 2M = 1) for the
black hole 2 (blue) and Schwarzschild black hole (red) for comparison.
Right panel: difference between the potentials.
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QNMs VII
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Figure: The effective potential and time-domain profile (at r∗ = 0
corresponding to r = 10) for the ℓ = 2 axial gravitational perturbations of
the Schwarzschild (r0 = 2M = 1) black hole (blue) and the potential

deformed by a Poschl-Teller-like augmentation δV = 0.06/ cosh
2
(2r∗ + 36)

(red).
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QNMs VIII
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Figure: Time-domain profiles without the dominant-mode contribution,
for SBH and ω0 ≈ 0.7622 − 0.1491i for the deformed potential. The
amplitude, corresponding to the first overtone, is about four orders larger
than the amplitude of the echo, appearing at t ≃ 60 (red). For an
illustration, the augmentation is chosen to be large in order to compare
the overtones effect with the echoes at earlier times.
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QNMs IX

The wave-like equation has the form,

∆(r)s(r)
d

dr

(

∆(r)1−s
dR

dr

)

(5)

+

(

K2(r)− isK(r)∆′(r)

∆(r)
+ 4isω r − λ

)

R(r) = 0 ,

where ∆(r) ≡ (r2A(1− r0/r) + a
2)(1− r0/r), K(r) ≡ (r2 + a2)ω − am,

and λ is the separation constant. Here for the gravitational
perturbations we consider s = −2. Then we consider ad hoc
deformation of the wave-like equation for gravitational
perturbations of Kerr black hole via deformations implemented in
A(x) (2). Requiring the parameter a2 to be large, the effective
potential will acquire deformation near the event horizon, but
remain almost the same at a distance from the black hole.
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QNMs X

In table 1 one can see that the same high sensitivity of overtones
takes place for the near-horizon deformations of the equation for
the gravitational perturbations of rotating black holes.

n Kerr modified Kerr

0 0.586017− 0.075630i 0.590393− 0.075233i
1 0.577922− 0.228149i 0.578766− 0.226295i
2 0.562240− 0.383895i 0.548651− 0.391231i
3 0.538956− 0.542888i 0.488262− 0.616589i
4 0.506263− 0.697962i 0.597420− 0.814367i
5 0.486283− 0.830803i 0.709014− 0.975480i
6 0.499165− 0.983084i 0.829156− 1.138613i
7 0.506652− 1.156708i 0.951035− 1.299293i

Table: Dominant modes of gravitational perturbations (ℓ = m = 2) for the
Kerr black hole a = 0.8, M = 1, r0 = 1.6 (ǫ = 0.25) compared to the
modified Kerr (a1 = 0.5, a2 = 100, a3 = 0).
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QNMs XI

An important question remains whether it is possible that a tiny
perturbation of the effective potential in the far zone, owing to
black holes environment, such as an accretion disk, also produces
the outburst of overtones? If so, then it would be difficult to
distinguish the latter from the near-horizon deformations. For this
purpose as an example we consider a simple augmentation of the
Schwarzschild potential which approaches zero at the horizon as

δV ∝ (r − r0)
h, r → r0

and at infinity as
δV ∝ r−a, r → ∞

having the maximum value δVmax = δ/r20 at r = rm > r0,

δV =
δ

r20

(

1− r0/r

1− r0/rm

)h(

1+
h

a
×
r/rm − 1

rm/r0 − 1

)−a

. (6)
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QNMs XII

We consider δ = 0.006, which is two orders smaller than the height
of the main Schwarzschild peak for ℓ = 2. Note, that the maximum
deformation is of the same order as the one considered in Table I
of [Jaramillo, et. al. Phys.Rev.Lett. 128 (2022) 21, 211102]. Such
astrophysically big deformation of the potential leads to very small
corrections of the first several overtones (see Appendix B) and the
corrections become even smaller if we shift the deformation
farther from the black hole. Unlike the deformation considered in
[Jaramillo, et. al. Phys.Rev.Lett. 128 (2022) 21, 211102], the
deformation (6) by construction does not affect the near-horizon
behaviour of the effective potential. Therefore we conclude that
the phenomenon of the overtone outburst indeed happens due to
deformations near the horizon.
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QNMs XIII
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Figure: Left: The fundamental mode and first five overtones for the scalar
field perturbations of the Schwarzschild black hole (red) and the black
hole deformed in the near horizon zone (blue) as in fig. 3. Right: The first
five modes of the gravitational Regge-Wheeler potential (red) and the
potential deformed at a distance from the black hole (blue): δ = 0.006 and
rm = 20r0.
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Conclusions

We have shown that a small deformation of the near-horizon geometry of

a black hole leads to a strong change of overtones, while the fundamental

mode remains almost unchanged. Thus the first few overtones can probe

the event horizon geometry which potentially could be seen at the earlier

stage of QN ringing [Giesler et. al. Phys.Rev.X 9 (2019) 4, 04106]. The

observed here phenomenon of high sensitivity of lowest overtones to

small deformations of the near horizon geometry is definitely connected

with the so called “overtones instability” discussed in [Jaramillo, et. al.

Phys.Rev.Lett. 128 (2022) 21, 211102]. There small perturbations of the

effective potential were deformed by a sinusoidal function of the compact

coordinate not only near the event horizon, but in the whole space. This

approach does not allow one to understand which kind of deformations

produce the outburst of overtones, which was the main question of our

consideration. Here we have shown that very small deformations solely

near the event horizon are sufficient for such an outburst of overtones, while

the deformations at a distance from the black hole need to be very large and

physically irrelevant in order to produce a similar effect.
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